4.7 Article

An effective strategy for increasing the radiosensitivity of Human lung Cancer cells by blocking Nrf2-dependent antioxidant responses

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 53, 期 4, 页码 807-816

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2012.05.038

关键词

Radiosensitizer; Nrf2; Reactive oxygen species; Radiotherapy; Free radicals

资金

  1. National Research Foundation of Korea (NRF)
  2. Ministry of Education, Science and Technology [2012-010472]
  3. Ministry of Health & Welfare, Republic of Korea [A111845]
  4. Korea Health Promotion Institute [A111845] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  5. National Research Foundation of Korea [2012M2A2A7010472] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Radiotherapy and chemotherapeutic agents can effectively induce apoptosis through generation of reactive oxygen species (ROS). Cancer cells frequently express high levels of ROS-scavenging enzymes, which confer resistance to ROS-mediated cell death. Keap1 (Kelch-like ECH-associated protein 1) sequesters and promotes the degradation of the antioxidant response element-binding transcription factor Nrf2 (nuclear factor erythroid-2-related factor 2). In non-small-cell lung cancer (NSCLC) cell lines and NSCLC patients, Keap1 is often present as a biallelic mutant that results in constitutive activation of Nrf2 function, which contributes to cytoprotection against oxidative stress and xenobiotics. To identify small molecules that inhibit antioxidant responses and increase apoptotic death after radiotherapy, we screened a chemical library containing 8000 synthetic compounds using a cell-based luciferase assay system. 4-(2-Cyclohexylethoxy)aniline (IM3829) inhibited the increase in Nrf2-binding activity and expression of the Nrf2 target genes induced by treatment with tertiary butylhydroquinone or radiation. Combined treatment with IM3829 and radiation significantly inhibited clonogenic survival of H1299, A549, and H460 lung cancer cells. IM3829 significantly increased ROS accumulation in irradiated cells compared with cells exposed to radiation alone and led to apoptotic cell death, as confirmed by caspase-3 and PARP cleavage. In mice bearing H1299 or A549 lung cancer xenografts, IM3829 together with radiation inhibited tumor growth more effectively than radiation alone. Our findings suggest that IM3829 could be a promising radiosensitizer in lung cancer patients, particularly those with high expression of Nrf2. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据