4.7 Article

Bovine rod rhodopsin. 1. Bleaching by luminescence in vitro by recombination of radicals from polyunsaturated fatty acids

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 53, 期 3, 页码 482-487

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2012.05.030

关键词

Free radicals; Luminescence; Rhodopsin; PUFA

资金

  1. Italian Space Agency

向作者/读者索取更多资源

Rod outer segments of photoreceptors are characterized by rhodopsin, a membrane protein surrounded by phospholipids containing a very high concentration of polyunsaturated fatty acids. These fatty acids can propagate free radicals, initiated by peroxidation, whose recombination is eventually associated with light emission as chemiluminescence. The results reported here indicate that this effect produces an isomerization of the retinal (bleaching effect) of the rhodopsin, similar to that induced by light in normal vision. In vitro experiments on detergent-suspended rod outer segments (RdOS) from bovine eyes, using an enzymatic source of radicals, xanthine/xanthine oxidase, were carried out. The results indicate that the proposed mechanism is likely, because they can show the bleaching of rhodopsin in RdOS, owing to its extraordinary sensitivity. Thus this mechanism is, also, a possible explanation for anomalous visual effects such as light flashes (phosphene-like) perceived by humans. The functionality of the rhodopsin in the RdOS was first tested by visible light. Rhodopsin reactivation after bleaching was obtained by adding cis-retinal to the suspension, demonstrating the reversibility of the bleaching process. A special experimental system was developed to observe the bleaching from luminescence by radical recombination, avoiding physical contact between the rod outer segment suspension and the radicals to prevent radical-induced damage and modifications of the delicate structure of the rod outer segment. (C) 2012 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Correction Biochemistry & Molecular Biology

miR-196a provides antioxidative neuroprotection via USP15/Nrf2 regulation in Huntington's disease (vol 209, pg 292, 2023)

Siew Chin Chan, Chih-Wei Tung, Chia-Wei Lin, Yun-Shiuan Tung, Po-Min Wu, Pei-Hsun Cheng, Chuan-Mu Chen, Shang-Hsun Yang

FREE RADICAL BIOLOGY AND MEDICINE (2024)

Article Biochemistry & Molecular Biology

Ribosome-targeting antibiotic control NLRP3-mediated inflammation by inhibiting mitochondrial DNA synthesis

Suyuan Liu, Meiling Tan, Jiangxue Cai, Chenxuan Li, Miaoxin Yang, Xiaoxiao Sun, Bin He

Summary: This study reveals that the antibiotic doxycycline effectively inhibits NLRP3 inflammasome activation by targeting mitochondrial translation and mtDNA synthesis, offering potential for the treatment of NLRP3-related diseases.

FREE RADICAL BIOLOGY AND MEDICINE (2024)

Article Biochemistry & Molecular Biology

Protectin D1 inhibits TLR4 signaling pathway to alleviate non-alcoholic steatohepatitis via upregulating IRAK-M

Hao Liu, Nana Li, Ge Kuang, Xia Gong, Ting Wang, Jun Hu, Hui Du, Minxuan Zhong, Jiashi Guo, Yao Xie, Yang Xiang, Shengwang Wu, Yiling Yuan, Xinru Yin, Jingyuan Wan, Ke Li

Summary: Protectin D1 (PTD1) improves hepatic steatosis, inflammation and fibrosis in a NASH mouse model by inhibiting the activation of TLR4 downstream signaling pathway, possibly through upregulation of IRAK-M expression, suggesting a potential new treatment for NASH.

FREE RADICAL BIOLOGY AND MEDICINE (2024)