4.7 Review

Methods for studying treefall gaps: A review

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 261, 期 7, 页码 1143-1151

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2011.01.011

关键词

Treefall gap; Gap size; Gap shape; Gap age; Gap models; Disturbance

类别

资金

  1. United States Department of Agriculture
  2. Huron Mountain Wildlife Foundation

向作者/读者索取更多资源

As silvicultural objectives have changed over the last several decades, managers are increasingly designing cutting regimes that mimic natural disturbance with the hopes that such systems will restore forests to a more natural condition while optimizing harvest yield. Treefall gaps, canopy openings caused by the death of one or more trees, are the dominant form of disturbance in many forest systems worldwide. These gaps play an important role in forest ecology by helping to maintain bio- and pedo-diversity, influencing nutrient cycling, and preserving the uneven-age nature of late-successional forests. In gap literature, there are inconsistencies with regard to gap terminology, methods for identifying and studying gaps, and modeling gap disturbances. From the papers reviewed, the size of treefall gaps ranges widely from 10 to > 5000 m(2); we suggest that the maximum gap size should be set at 1000 m2. Larger openings tend to have microclimates and return intervals significantly different than smaller treefall gaps. Two main definitions of treefall gaps exist: canopy gap: a 'hole' in the forest through all levels down to an average height of 2 m above ground and extended gap: canopy gap plus the area that extends to the bases of surrounding canopy trees. Although researchers have assumed a variety of gap shapes to simplify measuring gap size, gaps are often irregularly shaped and so we recommend that gap areas and shapes be determined from detailed field measurements. Gap age may be determined from tree ring analysis of released trees in or near the gap edge, the spacing of whorls on released saplings, or from decomposition of gap-making trees. Windthrow is the main cause of canopy gaps in a variety of ecosystems; other causes include insects, diseases, acidic deposition, drought, and climate change. Treefall-gap models have been developed to predict the following processes during gap making or infilling: (i) gap abundance, (ii) forest structure, (iii) spatial and temporal variations in light levels, (iv) canopy dynamics, and (v) soil nutrient and water regimes. We recommend a protocol for gap studies and identify future research topics. (c) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据