4.7 Article

Concentrations and fluxes of dissolved organic carbon and nitrogen in a Picea abies chronosequence on former arable land in Sweden

期刊

FOREST ECOLOGY AND MANAGEMENT
卷 259, 期 3, 页码 275-285

出版社

ELSEVIER
DOI: 10.1016/j.foreco.2009.10.013

关键词

Afforestation; Dissolved organic carbon; Dissolved organic nitrogen; Chronosequence; Norway spruce

类别

资金

  1. European Commission [EVK1-CT1999-00020]

向作者/读者索取更多资源

Shifting land use from agriculture to forestry induces major changes in the carbon (C) and nitrogen (N) cycles, including fluxes of dissolved organic carbon (DOC) and nitrogen (DON). This study investigated the long-term effects of afforestation on ecosystem DOC and DON dynamics using a chronosequence approach comprising four arable fields and nine differently aged (10-92 years) Norway spruce stands growing on similar former arable soils in the same area. Along the chronosequence, concentrations and fluxes of DOC and DON were determined in bulk precipitation, throughfall, O horizon leachate and mineral soil solution during a 2-3-year period. Soil water fluxes were calculated using a soil hydrological model (SWAP). Results showed that DOC concentrations and fluxes with throughfall were strongly positively correlated with tree height (r(2) = 0.95; P < 0.05 for both conc. and flux) and stand age, while DON showed no such trends, suggesting different origins of DOC and DON in throughfall. The highest concentrations and fluxes of DOC and DON occurred in soil leachate from the 0 horizon. Here, DOC flux was 250-310 kg C ha(-1) yr(-1) and DON flux 8-9 kg N ha(-1) yr(-1) in stands afforested between 65 and 92 years ago. Concentrations and fluxes of DOC and DON in the mineral subsoil were consistently low. Flux calculations suggest that there was a net loss of >90% (230-280 kg ha(-1) yr(-1)) of DOC leached from the 0 horizon within 0-60 cm of the mineral soil. There was no significant effect of land use or forest age on DOC concentrations in solution from the lower part of the A horizon. The effect of time since afforestation was masked by soil properties that influence DOM retention in the mineral soil. Our data indicate that DOC concentrations in the A horizon of the sites studied were primarily related to the oxalate-extractable Al and Fe amounts in the same horizon. Afforestation of arable land induced a gradual qualitative change in soil organic matter (SOM) and dissolved organic matter (DOM), with significantly increasing C:N ratios in soil and soil solution over time. The development of an 0 horizon and the subsequent leaching of DOC and DON to the underlying mineral soil are important drivers of a changing soil C and N turnover following afforestation. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据