4.5 Article

Degradation of biomolecules in artificially and naturally aged teeth: Implications for age estimation based on aspartic acid racemization and DNA analysis

期刊

FORENSIC SCIENCE INTERNATIONAL
卷 179, 期 2-3, 页码 181-191

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.forsciint.2008.05.017

关键词

collage; degradation; amino acid racemization; DNA quality; STR

向作者/读者索取更多资源

Postmortem teeth are the most stable structures, and can be used to gain different information (age estimation, genetic data). Over long postmortem intervals (PMI), degradation processes may alter the molecular integrity and thus affect the reliability of applied molecular methods. Whereas some knowledge on the degradation of biomolecules in bone during the PMI exists, data for teeth are lacking. In particular, the impact of degradation processes in dentine on age estimation based on aspartic acid racemization (AAR) cannot be estimated yet. Hence, the molecular stability of both collagen and DNA was analyzed systematically, and their impact on the reliability of age estimation based on AAR and genetic analyses was checked. Two hundred and ten human and 59 porcine teeth were heated (90 degrees C in water) to simulate collagen and DNA diagenesis: 14 naturally aged teeth (PMI: 3 days to 1700 years) were analyzed comparatively. Peptide patterns of cyanogen bromide (CNBr)-cleaved collagen were employed as a new approach to check the collagen integrity. In the same samples, collagen yields, amino acid compositions. AAR in different protein fractions and DNA integrity were analyzed. In heated human and poreine teeth the collagen content declined during the heating experiment. The amino acid composition in human samples was collagen-like until 12 days of heating. In naturally aged teeth, the collagen yielded from 9.5 to 15% and no discrepancy of amino acid composition to that to modern collagen was observed. Electrophoresis of CNBr-peptides showed an altered pattern in experimentally degraded samples from day 10 on; naturally aged samples displayed the typical collagen pattern. AAR increased in all protein fractions with increasing duration of the heating experiment; naturally aged samples displayed a slow accumulation of AAR. DNA degrated progressively and after 32 h of heat exposure no more DNA was detectable, whereas the amplification of nuclear and mitochondrial DNA was successful up to 48 h. STR typing was reliable up to 16 h and sex determination up to 40 h of heat exposure. In naturally aged samples of DNA quality yield and typing success did not correlate with PMI. The data highlight a remarkable stability of collagen dental proteins. Within relevant forensic periods a postmortem rise of AAR under normal conditions is negligible, and analyses of dental DNA has a high chance to be succesful. However, after large PMI and/or extreme postmortem conditions age estimation based on AAR and genetic analyses lose their reliability. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Medicine, Legal

Assessing the usefulness of Raman spectroscopy and lipid analysis of decomposed human bones in forensic genetics and molecular taphonomy

Heitor S. D. Correa, Ivano Alessandri, Andrea Verzeletti

Summary: This research assessed the usefulness of Raman spectroscopy and gas chromatography-mass spectrometry in analyzing bones. The techniques were found to be useful in molecular taphonomy studies and forensic genetics.

FORENSIC SCIENCE INTERNATIONAL (2024)