4.5 Article

Experiment and thermodynamic modeling of methane hydrate equilibria in the presence of aqueous imidazolium-based ionic liquid solutions using electrolyte cubic square well equation of state

期刊

FLUID PHASE EQUILIBRIA
卷 341, 期 -, 页码 61-69

出版社

ELSEVIER
DOI: 10.1016/j.fluid.2012.12.024

关键词

Methane hydrate; Alkylsulfate ionic-liquid; van der Waals-Platteuw; Electrolyte cubic square-well equation of state; Langmuir constants

向作者/读者索取更多资源

Methane hydrate dissociation conditions in the presence of imidazolium based aqueous ionic liquid solutions including 1-buthyl-3-methylimidazolium methyl sulfate ([BMIM][MeSO4]), 1-ethyl-3-methylimidazolium hydrogen sulfate ([EMIM][HSO4]), 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIM][EtSO4]), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) and 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([OH-EMIM][BF4]) are investigated. Isochoric method is used to measure experimental data in temperature range of 281.9-287.4K and in pressure range of 7.08-12.16 MPa. The studied ionic liquids present a thermodynamic inhibition behavior on methane hydrate and cause to shift the hydrate equilibrium dissociation conditions to the higher pressures/lower temperatures. It is found that the most effective thermodynamic inhibitor is [OH-EMIM][BF4] and among alkylsulfate-containing ionic liquids, the thermodynamic inhibition effects of two ionic liquids such as [EMIM][HSO4] and [BMIM][MeSO4] are better than that of [EMIM][EtSO4]. Furthermore, the electrolyte cubic square-well equation of state (eCSW EoS) is coupled with the van der Waals-Platteuw model and applied to predict the hydrate dissociation pressures of the methane + ionic liquid + water systems. A good agreement between the results of the model with the experimental data indicates the reliability of this model to predict the hydrate equilibrium conditions. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据