4.4 Article

On the Vortex Dynamic of Airflow Reattachment Forced by a Single Non-thermal Plasma Discharge Actuator

期刊

FLOW TURBULENCE AND COMBUSTION
卷 87, 期 1, 页码 1-31

出版社

SPRINGER
DOI: 10.1007/s10494-011-9325-4

关键词

Flow control; Plasma actuator; Dielectric barrier discharge; Separated airflow; Vortex dynamics

向作者/读者索取更多资源

Commercial and military aircrafts or miniature aerial vehicles can suffer from massive flow separation when high angles of attack are required. Single dielectric barrier discharge (DBD) actuators have demonstrated their capability of controlling such a separated flow at low external velocity. However, the processes resulting in the improvement of the flight performances remain unclear. In the present study, the reattachment process along the suction side of a NACA 0015 placed at an angle of attack of 16A degrees is experimentally investigated for an external velocity of 20 m/s (Re = 260,000). A single DBD actuator is mounted at the leading edge of the model. The velocity fields above the suction side of the airfoil are measured by a high-speed acquisition system (3 kHz). The results indicate that the baseline flow presents shed vortices that form at the leading edge and linearly grow along the free shear layer axis. This vortex shedding is organized and exhibits a specific frequency of about 90 Hz. The continuous actuation produces a partial flow reattachment up to 70% of the chord length. Temporal cross-correlation function indicates the presence of a vortex shedding at the trailing edge of the controlled flow. Finally, the temporal analysis demonstrates that the reattachment process requires 50 ms to reach a stabilized attached flow. The time-resolved analysis of the reattachment suggests that the actuation by plasma discharge acts as a catalyser by reinforcing one of the coherent flow structures already existing in the natural flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据