4.7 Article

Differences in mortality, growth, lysozyme, and toll-like receptor gene expression among genetic groups of catfish exposed to virulent Edwardsiella ictaluri

期刊

FISH & SHELLFISH IMMUNOLOGY
卷 24, 期 1, 页码 82-89

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fsi.2007.09.001

关键词

toll-like receptors; catfish; Edwardsiella ictaluri; ESC; real-time PCR; lysozyme; expression

向作者/读者索取更多资源

Survivorship to ESC (enteric septicemia of catfish) varies among and within strains of commercially raised catfish, however the immunological basis for differences in susceptibility is not well- understood. We assessed the effect of pathogen challenge with Edwardsiella ictaluri on five genetic groups of catfish by measuring both phenotypic response (mortality, pathogen levels, specific growth rate), and three measures of immune response, including lysozyme activity and mRNA expression of two toll-like receptors (TLR3 and TLR5). Both mortality and pathogen loads, in addition to non-specific immune response, consistently ranged from the least susceptible Blue catfish (24%, 3.4 X 10(2) +/- 9.3 x 10(1) cell-equivalents/mg, 13.2 +/- 3.2 U/mL tissue, respectively) to the most susceptible 103 channel catfish (65%, 1.1 X 10(4) +/- 6.4 x 10(3) cell-equivalents/mg tissue, 67.3 +/- 28.7 U/mL, respectively). Similarly, specific growth rate was reduced in exposed fish, compared to non-exposed controls, only in the most susceptible genetic groups (P = 0.0051). Trends in mRNA expression levels were apparent in each tissue type for both genes. In kidney, differences were evident in expression of both TLR3 and TLR5 mRNA between strains early and late in challenge (P < 0.01). TLR5 mRNA showed significant downregulation in all strains on days 1 and 4 (P = 0.0001). In spleen, all. strains had elevated levels of TLR3 (P = 0.0050) and TLR5 mRNA (P < 0.0001) only 1 day post-exposure. In stomach, only one strain (103 x RR) showed upregulation (P = 0.0063) throughout challenge. The relationship of phenotypic (mortality and growth) and immune responses measured here, suggests that variation in susceptibility to ESC is a function of differences in innate immune response. Understanding these differences will be crucial for enhancing the immune system through selective breeding and in developing disease management protocols for channel catfish. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据