4.2 Article

Fire behaviour and external flames in corridor and tunnel-like enclosures

期刊

FIRE AND MATERIALS
卷 36, 期 8, 页码 636-647

出版社

WILEY-BLACKWELL
DOI: 10.1002/fam.1124

关键词

enclosure fires; facade fires; corridor; tunnel like enclosures

向作者/读者索取更多资源

This work investigates how the inflow, the burning and the outflow develop in a corridor open to one end having a fire at either the closed or open end. The situation of a corridor fire having a fire source at the close end is a situation similar to a tunnel having a fire source at the centre of the tunnel without ventilation. A gaseous propane burner is used to produce the fire at a prescribed fuel flow rate in a long corridor of aspect ratio up to 6:1 having a rectangular cross section and varying door-like openings. Gas temperatures using thermocouple trees, heat fluxes in the corridor and on its facade, flame heights of emerging flames and total heat release rates (HRRs) are measured as the fuel flow rate of propane increases gradually and linearly with time to a preset maximum value. For over-ventilated conditions, the flames remain near the fire source at the closed end of the corridor. Unexpectedly, it is established for under-ventilated conditions that the inflow of air is not affected by the aspect ratio of the corridor or the location of the burner in the corridor and that the vertical distribution of gas temperatures inside the enclosure is nearly uniform with height everywhere. In addition, the flame heights and heat fluxes on the facade are the same as those for aspect ratios of the corridor from 1:1 to 3:1 examined in previous work. Moreover, as the conditions changed from over-ventilated to under-ventilated conditions, the flames migrated in a ghostly manner from the closed end to the open end of the corridor as soon as under-ventilated conditions were established. The speed of migration of the flames from the back to the front has also been inferred from the thermocouple tree measurements, which also indicate that the flow conditions ahead and after the passing of the front are changed. These results can be applied to interpret some of the observed behaviours of fires in long corridors or tunnels without ventilation. Copyright (c) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据