4.7 Article

Coupled DDD-FEM modeling on the mechanical behavior of microlayered metallic multilayer film at elevated temperature

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2015.09.007

关键词

DDD-FEM coupling scheme; Metallic multilayer film; High temperature; Layer thickness effect; Strengthening mechanism; Dislocation climb

资金

  1. NSFC [11272130, 11272128]
  2. Natural Science Foundation of Hubei Province [2013CFA130]
  3. Fundamental Research Funds for the Central Universities [2014TS134]

向作者/读者索取更多资源

To investigate the mechanical behavior of the microlayered metallic thin films (MMMFs) at elevated temperature, an enhanced discrete-continuous model (DCM), which couples rather than superposes the two-dimensional climb/glide-enabled discrete dislocation dynamics (2D-DDD) with the linearly elastic finite element method (FEM), is developed in this study. In the present coupling scheme, two especial treatments are made. One is to solve how the plastic strain captured by the DDD module is transferred properly to the FEM module as an eigen-strain; the other is to answer how the stress field computationally obtained by the FEM module is transferred accurately to the DDD module to drive those discrete dislocations moving correctly. With these two especial treatments, the interactions between adjacent dislocations and between dislocation pile-ups and interphase boundaries (IBs), which are crucial to the strengthening effect in MMMFs, are carefully taken into account. After verified by comparing the computationally predicted results with the theoretical solutions for a dislocation residing in a homogeneous material and nearby a bi-material interface, this 2D-DDD/FEM coupling scheme is used to model the tensile mechanical behaviors of MMMFs at elevated temperature. The strengthening mechanism of MMMFs and the layer thickness effect are studied in detail, with special attentions to the influence of dislocation climb on them. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Materials Science, Multidisciplinary

Non-Hermitian wave dynamics of odd plates: Microstructure design and theoretical modelling

Yanzheng Wang, Qian Wu, Yiran Tian, Guoliang Huang

Summary: This paper proposes the microstructure design of an odd plate and investigates the directional wave energy amplification and the presence of interface waves in odd plates through theoretical and numerical analysis. The research findings contribute to the understanding of elastic behavior in 2D non-Hermitian systems.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Topology optimization of flexoelectric metamaterials with apparent piezoelectricity

F. Greco, D. Codony, H. Mohammadi, S. Fernandez-Mendez, I. Arias

Summary: This study overcomes the difficulty of harnessing the flexoelectric effect by designing multiscale metamaterials. Through topology optimization calculations, we obtain optimal structures for various apparent piezoelectric properties and find that low-area-fraction lattices are the preferred choice. The results show competitive estimations of apparent piezoelectricity compared to reference materials such as quartz and PZT ceramics.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

A treatment of particle-electrolyte sharp interface fracture in solid-state batteries with multi-field discontinuities

Xiaoxuan Zhang, Tryaksh Gupta, Zhenlin Wang, Amalie Trewartha, Abraham Anapolsky, Krishna Garikipati

Summary: This study presents a computational framework for coupled electro-chemo-(nonlinear) mechanics at the particle scale in solid-state batteries, including interfacial fracture, degradation in charge transfer, and stress-dependent kinetics. The discontinuous finite element method allows for arbitrary particle shapes and geometries.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Coexistence of five domains at single propagating interface in single-crystal Ni-Mn-Ga shape memory alloy

Chengguan Zhang, Xavier Balandraud, Yongjun He

Summary: The coexistence of both austenite and martensite is a common characteristic in Shape Memory Alloys (SMAs). The multiple-domain microstructures, consisting of austenite, martensite twins, and individual martensite variants, evolve collectively during the phase transformation, affecting the material's macroscopic response. This paper presents an experimentally observed interface consisting of five domains in a Ni-Mn-Ga single-crystal, and analyzes the effects of thermal loading path and material initial state on the domain pattern formation.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

A snap-through instability of cell adhesion under perturbations in hydrostatic pressure

Shaobao Liu, Haiqian Yang, Guang-Kui Xu, Jingbo Wu, Ru Tao, Meng Wang, Rongyan He, Yulong Han, Guy M. Genin, Tian Jian Lu, Feng Xu

Summary: The balance between stress and adhesion plays a crucial role in governing the behaviors of adherent cells, such as cell migration. In certain microenvironments, such as tumor, variations in hydrostatic pressure can significantly impact cell volume and adhesion, which in turn affects cell behavior.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Pinning cracks by microstructure design in brittle materials

Xun Xiong, Qinglei Zeng, Yonghuan Wang, Ying Li

Summary: In this work, the authors investigate the possibility of enhancing the resistance to crack growth in brittle materials through microstructure design. They establish a computational framework to simulate crack propagation and characterize fracture energy. The effects of different types of voids on toughening mechanisms are explored, and the critical conditions for embrittlement-toughening transition are identified. The study also discusses the difference between void toughening in brittle and ductile materials, and extends the toughening strategy to nacre-like materials.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Dynamic high-order buckling and spontaneous recovery of active epithelial tissues

Huan Wang, Yong-Quan Liu, Jiu-Tao Hang, Guang-Kui Xu, Xi-Qiao Feng

Summary: This study establishes a cytoarchitectural model to accurately capture the buckling and postbuckling behaviors of epithelia under fast compression. The stress evolution of epithelia is divided into three stages: loading, phase transition, and stress recovery. The postbuckling process is governed by the active tension generated by the actomyosin network. The study also proposes a minimal model that predicts the flattening time and stress recovery extent as functions of applied strain or strain rate, in agreement with simulations and experiments.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Mechanics and topology of twisted hyperelastic filaments under prescribed elongations: Experiment, theory, and simulation

Lei Liu, Hao Liu, Yuming He, Dabiao Liu

Summary: This study investigates the mechanics and topologically complex morphologies of twisted rubber filaments using a combination of experiment and finite strain theory. A finite strain theory for hyperelastic filaments under combined tension, bending, and torsion has been established, and an experimental and theoretical morphological phase diagram has been constructed. The results accurately determine the configuration and critical points of phase transitions, and the theoretical predictions agree closely with the measurements.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Frictional slip wave solutions for dynamic sliding between a layer and a half-space

Abhishek Painuly, Kunnath Ranjith, Avinash Gupta

Summary: This paper analyzes the interfacial waves caused by frictional slipping and studies their dispersion relation and wave modes. By studying the slip waves in a geophysical model, the surface wave dispersion phenomenon is explored, and an alternative explanation is proposed.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Asymptotically matched extrapolation of fishnet failure probability to continuum scale

Houlin Xu, Joshua Vievering, Hoang T. Nguyen, Yupeng Zhang, Jia-Liang Le, Zdenek P. Bazant

Summary: Motivated by the extraordinary strength of nacre, this study investigated the probabilistic distribution of fishnet strength using Monte Carlo simulations and found that previous analytical solutions are not applicable for fishnets with a large number of links. By approximating large-scale fishnets as a continuum with cracks or holes, the study revealed that the strength distribution follows the Weibull distribution. This new model has significance for optimizing the strength-weight ratio in printed material structures.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Nonlinear anisotropic viscoelasticity

Souhayl Sadik, Arash Yavari

Summary: This paper revisits the mathematical foundations of nonlinear viscoelasticity and studies the geometry of viscoelastic deformations. It discusses the decomposition of the deformation gradient into elastic and viscous distortions and concludes that the viscous distortion can only be a two-point tensor. The governing equations of nonlinear viscoelasticity are derived and the constitutive and kinetic equations for various types of viscoelastic solids are discussed.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

Elastic energy and polarization transport through spatial modulation

Wen Cheng, Hongkuan Zhang, Yu Wei, Kun Wang, Gengkai Hu

Summary: In this study, we propose a phenomenon similar to Thouless pumping for a continuous in-plane elastic system, enabling topological transport of elastic waves through spatial modulation of material elasticity. By incorporating specific lattice microstructures, termed pentamode materials, precise and robust control over elastic wave propagation is achieved.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)

Article Materials Science, Multidisciplinary

A simple quantitative model of neuromodulation, Part I: Ion flow neural ion channels

Linda Werneck, Mertcan Han, Erdost Yildiz, Marc-Andre Keip, Metin Sitti, Michael Ortiz

Summary: We have developed a simple model that describes the ionic current through neuronal membranes by considering the membrane potential and extracellular ion concentration. The model combines a simplified Poisson-Nernst-Planck model of ion transport through individual ion channels with channel activation functions calibrated from experimental data. The calibrated model accounts for the transport of calcium, sodium, potassium, and chloride and shows remarkable agreement with experimentally measured current-voltage curves for human neural cells.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2024)