4.3 Article

Discovery of new regulatory genes of lipopeptide biosynthesis in Pseudomonas fluorescens

期刊

FEMS MICROBIOLOGY LETTERS
卷 356, 期 2, 页码 166-175

出版社

OXFORD UNIV PRESS
DOI: 10.1111/1574-6968.12404

关键词

lipopeptides; regulation; Pseudomonas; swarming

资金

  1. Graduate School of Experimental Plant Sciences (EPS)

向作者/读者索取更多资源

Pseudomonas fluorescens SS101 produces the cyclic lipopeptide massetolide with diverse functions in antimicrobial activity, motility, and biofilm formation. To understand how massetolide biosynthesis is genetically regulated in SS101, c. 8000 random plasposon mutants were screened for reduced or loss of massetolide production. Of a total of 58 putative mutants, 45 had a mutation in one of the three massetolide biosynthesis genes massA, massB, or massC. For five mutants, the insertions were located in the known regulatory genes gacS, gacA, and clpP. For the remaining eight mutants, insertions were located in clpA, encoding the ClpP chaperone, in phgdh, encoding D-3-phosphoglycerate dehydrogenase, in the heat shock protein-encoding dnaK, or in the transmembrane regulatory gene prtR. Genetic, chemical, and phenotypic analyses showed that phgdh, dnaK, and prtR are indeed involved in the regulation of massetolide biosynthesis, most likely by transcriptional repression of the LuxR-type regulator genes massAR and massBCR. In addition to their role in massetolide biosynthesis, dnaK and prtR were found to affect siderophore and extracellular protease(s) production, respectively. The identification of new regulatory genes substantially extended insights into the signal transduction pathways of lipopeptide biosynthesis in P. fluorescens and into regulation of other traits that may contribute to its life-style in the rhizosphere.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据