4.5 Article

Both Cycloclasticus spp. and Pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France)

期刊

FEMS MICROBIOLOGY ECOLOGY
卷 71, 期 1, 页码 137-147

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1574-6941.2009.00788.x

关键词

polycyclic aromatic hydrocarbon; microcosm; biodegradation; bioremediation; seawater; denaturing gradient gel electrophoresis

资金

  1. Haute-Normandie region, France
  2. Agency for environment and energy management (ADEME) [TEZ 08-01]

向作者/读者索取更多资源

Like other highly urbanized and industrialized estuaries, the Seine estuary (France) has, for decades, received high inputs of polycyclic aromatic hydrocarbons (PAHs). In order to estimate the bioremediation potentials and to identify the bacterial species involved in hydrocarbon degradation, we used microcosms containing seawater from the Seine estuary supplemented with either naphthalene, phenanthrene, fluorene or pyrene. In the microcosms enriched with naphthalene or phenanthrene, hydrocarbon biodegradation was significant within 9 weeks (43% or 46%, respectively), as shown by analyses in GC-MS. In similar microcosms incubated also with naphthalene or phenanthrene, analysis of the 16S rRNA gene sequences (DNA and cDNA) with denaturing gradient gel electrophoresis and clone libraries indicated that the PAH-degrading communities were dominated by Cycloclasticus spp., confirming their universal key role in degradation of low-molecular-weight PAHs in marine environments. However, in contrast to previous studies, we found that Pseudomonas spp. also degraded naphthalene and phenanthrene in seawater; this occurred only after 21 days, as was confirmed by real-time PCR. Although this genus has been abundantly described in the literature as a good PAH-degrading bacterial group in soil or in sediment, to our knowledge, this is the first evidence of a significant fitness in PAH degradation in seawater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据