4.7 Article

Functional properties of La0.99X0.01Nb0.99Al0.01O4-δ and La0.99X0.01Nb0.99Ti0.01O4-δ proton conductors where X is an alkaline earth cation

期刊

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
卷 35, 期 4, 页码 1239-1253

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jeurceramsoc.2014.11.009

关键词

Proton-conducting ceramic materials; Hydrogen transport ceramic membranes; Rare earth ortho-niobates; Acceptor-doped lanthanum niobates

资金

  1. Helmholtz Association, Initiative and Networking Fund, MEM-BRAIN Portfolio

向作者/读者索取更多资源

Lanthanum niobates with general formulas of La0.99X0.01Nb0.99Al0.01O4-delta and La0.99X0.01Nb0.99Ti0.01O4-delta (X = Mg, Ca, Sr or Ba) were synthesized via the conventional solid state reaction. Specimens with relative density above 96% were produced after sintering. Structural and phase composition studies revealed predominant monoclinic Fergusonite structure for the majority of samples. SEM and TEM studies elucidated the effect of the used dopant combinations on grain growth, micro-crack formation and secondary phase formation. Results from microstructural study were correlated to the grain interior and grain boundary conductivities for selected samples (La0.99Sr0.01Nb0.99Al0.01O4-delta and La0.99Sr0.01Nb0.99Ti0.01O4-delta). The majority of co-doped niobates exhibited appreciable protonic conductivity under humid atmospheres at intermediate temperatures. Sr- or Ca-doped compounds displayed the highest total conductivities with values for LSNA equal to 6 x 10-(4) S/cm and 3 x 10(-4) S/cm in wet air and in wet 4% H-2-Ar (900 degrees C), respectively. Additionally, thermal expansion was studied to complete functional characterization of co-doped LaNbO4. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Materials Science, Multidisciplinary

Mechanistic study of dark etching regions in bearing steels due to rolling contact fatigue

Mostafa El Laithy, Ling Wang, Terry J. Harvey, Alexander Schwedt, Bernd Vierneusel, Joachim Mayer

Summary: Dark etching region (DER) formation is the initial stage of subsurface microstructural changes in bearing steels due to cyclic stresses, which is followed by the development of low angle bands (LAB) and high angle bands (HAB). This study analyzes the development of DER in two different steels, 100Cr6 and 50CrMo4, at different stages of bearing lifetime using SEM, EBSD, and nanoindentation. The findings show that early stages of DER are characterized by multiple dark etching bands oriented relative to the rolling direction. These bands contribute to the refinement of the parent microstructure and act as stress points that initiate LAB formation through recrystallization. This study establishes a connection between DER and LAB/HAB development in rolling bearings.

ACTA MATERIALIA (2023)

Article Chemistry, Physical

Nanolaminated Ternary Transition Metal Carbide (MAX Phase)-Derived Core-Shell Structure Electrocatalysts for Hydrogen Evolution and Oxygen Evolution Reactions in Alkaline Electrolytes

Youbing Li, Shuairu Zhu, Erxiao Wu, Haoming Ding, Jun Lu, Xulin Mu, Lu Chen, Yiming Zhang, Justinas Palisaitis, Ke Chen, Mian Li, Pengfei Yan, Per O. a. Persson, Lars Hultman, Per Eklund, Shiyu Du, Yongbo Kuang, Zhifang Chai, Qing Huang

Summary: Researchers have designed a new Ta2CoC@Ta(2)CTx core-shell structure that exhibits excellent catalytic performance in alkaline electrolyte environments, making it suitable for electrocatalytic hydrogen and oxygen production. This study provides a new strategy for designing multifunctional electrocatalysts and paves the way for the development of MAX phase-based materials in clean energy applications.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2023)

Article Chemistry, Multidisciplinary

Resistive Switching and Current Conduction Mechanisms in Hexagonal Boron Nitride Threshold Memristors with Nickel Electrodes

Lukas Voelkel, Dennis Braun, Melkamu Belete, Satender Kataria, Thorsten Wahlbrink, Ke Ran, Kevin Kistermann, Joachim Mayer, Stephan Menzel, Alwin Daus, Max C. Lemme

Summary: The switching mechanism of multilayer hexagonal boron nitride (h-BN) threshold memristors with nickel (Ni) electrodes is investigated through temperature-dependent current-voltage measurements. The formation and retraction of nickel filaments along boron defects in the h-BN film are proposed as the resistive switching mechanism. The electrical data are corroborated with TEM analyses, confirming the viability of using temperature-dependent current-voltage measurements as a valuable tool for analyzing resistive switching phenomena in memristors made of 2D materials. The memristors exhibit wide current operation range, low standby currents, low cycle-to-cycle variability, and a large On/Off ratio.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Chemistry, Physical

Direct conversion of carbon dioxide into liquid fuels and chemicals by coupling green hydrogen at high temperature

Yubing Li, Lei Zeng, Ge Pang, Xueer Wei, Mengheng Wang, Kang Cheng, Jincan Kang, Jose M. Serra, Qinghong Zhang, Ye Wang

Summary: The direct hydrogenation of CO2 to gasoline and olefins using bifunctional iron-zeolite tandem catalysts operated at high temperatures (>300 degrees C) can efficiently utilize CO2 from industrial combustion and green H2 produced by solid oxide electrolytic cells (SOEC). The optimized FeMnK+H-ZSM-5 catalyst achieves a selectivity of 70% for C5-C11 range hydrocarbons and 17% for C2-C4 lower olefins at 320 degrees C. The conversion levels of CO2 and the aromatics contents are significantly enhanced at higher temperatures.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Chemistry, Physical

Aldol condensation of acetaldehyde for butanol synthesis: A temporal analysis of products study

Joachim Pasel, Johannes Haeusler, Dirk Schmitt, Helen Valencia, Joachim Mayer, Ralf Peters

Summary: The catalytic upgrading of CO2-based ethanol into valuable products, such as higher alcohols, is an increasingly popular research topic. Among these products, carbon-neutral n-butanol has the potential to replace a significant portion of conventional gasoline in the transportation sector. The Guerbet reaction, particularly the homo aldol condensation of acetaldehyde, has been studied as a promising synthesis route for n-butanol. In this study, the Temporal Analysis of Products methodology was used to investigate the reaction, with lanthanide oxides supported on activated carbon as catalysts. The research revealed the formation of butanol through the aldol condensation of acetaldehyde, as well as its decomposition into CO, CH4, and H2. Carbonaceous deposits were formed when acetaldehyde was pulsed onto the catalyst surface, but catalyst regeneration was successfully achieved through O2 pulsing. Other reaction routes leading to acidic acid, ethyl acetate, or diethyl ether were excluded through experimental tests.

APPLIED CATALYSIS B-ENVIRONMENTAL (2023)

Article Environmental Sciences

Photocatalytic solid-phase degradation of polyethylene with fluoride-doped titania under low consumption ultraviolet radiation

Aida M. Diez, Marta Pazos, M. Angeles Sanroman, Helen Valencia Naranjo, Joachim Mayer, Yury Kolen'ko

Summary: This study successfully synthesized and characterized fluoride-doped-TiO2 and demonstrated its applicability in solid-phase photodegradation of polyethylene films for the first time. After three weeks of UV A radiation using a low consumption LED lamp, the polyethylene films containing only 2% of the photocatalyst experienced nearly 50% weight loss, surpassing previously reported data. The results suggest the potential for future production of self-photodegradable plastics for environmental and wastewater treatment applications.

JOURNAL OF ENVIRONMENTAL MANAGEMENT (2023)

Article Engineering, Chemical

The role of ionic-electronic ratio in dual-phase catalytic layers for oxygen transport permeation membranes

Marwan Laqdiem, Julio Garcia-Fayos, Laura Almar, Maria Balaguer, Jose M. Serra

Summary: Oxygen transport membranes (OTMs) are attractive for decarbonization of the industry, but the oxygen permeation remains a limitation. Dual-phase composite materials have potential as membrane candidates due to their stability under CO2 atmospheres. The phase ratio in the catalytic layers affects the surface-exchange reactions and plays a crucial role in improving the oxygen flux.

JOURNAL OF MEMBRANE SCIENCE (2023)

Article Materials Science, Multidisciplinary

Effects of stoichiometry and individual layer thickness ratio on the quality of epitaxial CrBx/TiBy superlattice thin films

Samira Dorri, Jens Birch, Fredrik Eriksson, Justinas Palisaitis, Per O. A. Persson, Babak Bakhit, Lars Hultman, Naureen Ghafoor

Summary: In this study, CrBx/TiBy (0001) diboride superlattices were grown epitaxially on Al2O3 substrates using direct-current magnetron sputter epitaxy. The effects of period and B/TM ratio on the structural quality were investigated. It was found that increasing the relative thickness of TiBy improved the superlattice quality but excessive TiBy led to structural distortion. On the other hand, increasing the relative thickness of CrBx enhanced the superlattice quality and hindered the formation of B-rich boundaries. The hardness values of the superlattices ranged from 29-34 GPa.

MATERIALS & DESIGN (2023)

Article Materials Science, Multidisciplinary

Fabrication of Ultrasmall Si Encapsulated in Silicon Dioxide and Silicon Nitride as Alternative to Impurity Doping

Michael Frentzen, Michail Michailow, Ke Ran, Noel Wilck, Joachim Mayer, Sean C. Smith, Dirk Koenig, Joachim Knoch

Summary: Recently, the nanoscale electronic structure shift induced by anions at surfaces (NESSIAS) has been described, based on density functional theory calculations and experimental data. This model explains the structure shift of low-doped single-crystalline Si nanowells (Si-NWs) with thicknesses <= 3 nm embedded in SiO2 (Si3N4) towards n-type (p-type) behavior. The influence of anions allows for very steep p-n junctions without the drawbacks of impurity doping. The process to fabricate crystalline silicon (c-Si) NWs embedded in SiO2 and Si3N4 is described and evaluated in terms of reproducibility and surface roughness.

PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE (2023)

Article Multidisciplinary Sciences

Chemical scissor-mediated structural editing of layered transition metal carbides

Haoming Ding, Youbing Li, Mian Li, Ke Chen, Kun Liang, Guoxin Chen, Jun Lu, Justinas Palisaitis, Per O. A. Persson, Per Eklund, Lars Hultman, Shiyu Du, Zhifang Chai, Yury Gogotsi, Qing Huang

Summary: Intercalated layered materials provide distinctive properties and serve as precursors for important 2D materials. This study presents a structural editing protocol for layered carbides (MAX phases) and their 2D derivatives (MXenes). Gap-opening and species-intercalating stages were mediated by chemical scissors and intercalants, resulting in a large family of MAX phases with unconventional elements and structures, as well as MXenes with versatile terminals. The reconstruction of MAX phases and a family of metal-intercalated 2D carbides may drive advances in fields ranging from energy to printed electronics.

SCIENCE (2023)

Article Chemistry, Physical

Impact of lattice properties on the CO2 splitting kinetics of lanthanide-doped cerium oxides for chemical looping syngas production

Marwan Laqdiem, Alfonso J. Carrillo, Georgios Dimitrakopoulos, Maria Balaguer, Julio Garcia-Fayos, Ahmed F. Ghoniem, Jose M. Serra

Summary: This study investigates the application of cerium oxide (CeO2) particles in solar-driven thermochemical cycles and explores the effect of doping with other cations on oxygen-vacancy concentration and crystal lattice. The results show that doping can enhance fuel yield and redox oxygen-exchange kinetics.

SOLID STATE IONICS (2023)

Article Materials Science, Multidisciplinary

Phase separation paths in metastable Zr1-xAlxN monolithic layers compared to multilayers with TiN: Growth versus annealing temperatures

Naureen Ghafoor, Samira Dorri, Justinas Palisaitis, Lina Rogstrom, Babak Bakhit, Grzegorz Greczynski, Lars Hultman, Jens Birch

Summary: Metastable super-saturated Zr1_xAlxN alloys tend to phase separate into the equilibrium cubic (c) ZrN and wurtzite (w) AlN. Different transformation paths were observed depending on the deposition method and post-deposition annealing. The surface segregation effects and secondary phase transformations were studied using in situ high-energy synchrotron wide-angle X-ray scattering and analytical transmission electron microscopy. The results showed the formation of AlN-ZrN labyrinthine structure and the inhibition of c-AlN formation during transformation.

MATERIALIA (2023)

Article Materials Science, Coatings & Films

Effect of modulation period and thickness ratio on the growth and mechanical properties of heteroepitaxial c-Ti0.4Al0.6N/h-Cr2N multilayer films

Hairui Ma, Qiang Miao, Wenping Liang, Per O. A. Persson, Justinas Palisaitis, Xiguang Gao, Yindong Song, Per Eklund, Arnaud le Febvrier

Summary: This study investigated the structure and mechanical properties of c-TiAlN/h-Cr2N multilayer thin films. The results showed that regardless of the modulation period and thickness ratios, the multilayer films exhibited preferred orientation and well-defined grain boundaries. In terms of mechanical properties, the film with a 20 nm period and 75% Cr2N thickness ratio demonstrated the highest hardness and reduced elastic modulus.

SURFACE & COATINGS TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Microwave-Driven Exsolution of Ni Nanoparticles in A-Site Deficient Perovskites

Andres Lopez-Garcia, Aitor Dominguez-Saldana, Alfonso J. Carrillo, Laura Navarrete, Maria I. Valls, Beatriz Garcia-Banos, Pedro J. Plaza-Gonzalez, Jose Manuel Catala-Civera, Jose Manuel Serra

Summary: Exsolution has become a promising method for generating metallic nanoparticles, offering better stability and robustness compared to conventional deposition methods. Alternative exsolution methods that do not rely on high-temperature reduction are being explored, such as utilizing electrochemical potentials or plasma technologies. In this study, a method based on pulsed microwave radiation is proposed for driving the exsolution of metallic nanoparticles, enabling high scalability with short exposure times and low temperatures.

ACS NANO (2023)

Article Chemistry, Multidisciplinary

Modulating redox properties of solid-state ion-conducting materials using microwave irradiation

J. M. Serra, M. Balaguer, J. Santos-Blasco, J. F. Borras-Morell, B. Garcia-Banos, P. Plaza-Gonzalez, D. Catalan-Martinez, F. Penaranda-Foix, A. Dominguez, L. Navarrete, J. M. Catala-Civera

Summary: This study investigates microwave-induced redox transformations on solid-state ion-conducting materials, and finds that reduction is triggered at a specific temperature leading to a significant increase in electric conductivity. The effectiveness of the redox process is influenced by material composition, gas environment, and microwave power intensity, with fine-grained materials showing amplified effects.

MATERIALS HORIZONS (2023)

Article Materials Science, Ceramics

Phase equilibria in the ZrO2-GdO1.5-TaO2.5 system at 1500 °C

Dan Zhao, Yi Feng, Zhipeng Pi, Fan Zhang

Summary: Phase equilibria in the ZrO2-GdO1.5-TaO2.5 (ZGTO) system were experimentally investigated, and the differences between ZGTO and the existing ZrO2-YO1.5-TaO2.5 (ZYTO) were discussed. The study is useful for thermodynamic assessment of ZGTO and can guide the design of novel thermal barrier coatings materials.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Alumina precipitate along dislocations in rutile single crystal of diffusion couple during cooling from 1200° to 1400°C

Yutaka Ohya, Wingki Mey Hendra, Chika Takai-Yamashita, Takayuki Ban

Summary: Diffusion couples of rutile and corundum single crystals were prepared and examined to study the solid solution and precipitation of corundum in rutile during cooling. Different precipitation forms of corundum were observed under different cooling conditions.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Water-enhanced plasticity of calcium fluoride

Jiaming Zhan, Yunfa Guo, Hao Wang

Summary: This study systematically investigates the mechanical behaviors of calcium fluoride in humid environments. The effects of water on the deformation and plastic enhancement of CaF2 under indentation are explored through microindentation experiments, atomic simulations, and Raman spectroscopy measurement.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Microwave tunability in tin substituted barium titanate

Hangfeng Zhang, Henry Giddens, Theo Graves Saunders, Matteo Palma, Isaac Abrahams, Haixue Yan, Yang Hao

Summary: The relationship between low and high frequency tunabilities in tin substituted barium titanate ceramics was investigated. It was found that there are differences in tunabilities at different frequencies due to the different activities of larger ferroelectric domains and polar nanoclusters.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Boosting energy storage performance in negative temperature coefficient linear-like dielectrics via composite modulation in the superparaelectric state

Kaibiao Xi, Jiacheng Liu, Beibei Song, Huarong Cheng, Yihao Li, Xiaole Yu, Mupeng Zheng, Mankang Zhu, Yudong Hou

Summary: Composite modulation in the superparaelectric state of the BTBZ-CT system is proposed as an effective strategy to achieve both NTCC and excellent energy storage performance in dielectric ceramics. The addition of BZ and CT to BT ferroelectrics can move the SPE state to the normal use temperature zone, resulting in enhanced NTCC characteristics and energy storage performance. Furthermore, intentional precipitation of CT at grain boundaries can refine the grain size, increase the bandgap, and strengthen the local electric field distribution, thereby enhancing the breakdown electric field.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Sinterability of sodium bismuth titanate-based electroceramics at low temperatures

Hamed Salimkhani, Lovro Fulanovic, Till Froemling

Summary: The demand for robust multilayer ceramic capacitors with high-temperature and high-power capabilities is increasing rapidly. However, cost-effective production is a challenge. This study investigates the use of Na0.5Bi0.5TiO3-based materials as promising lead-free options. By adding sintering aids, the sintering temperature of Na0.5Bi0.5TiO3-BaTiO3-CaZrO3-BiAlO3 solid solutions was successfully reduced to 975 degrees C, suitable for co-sintering with Cu electrodes without adverse effects on capacitor properties.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Residual stress and interface debonding behavior in Si3N4w reinforced SiCN composites prepared by the PIP process: A case study

Mingxing Li, Ran Mo, Zeshui Xu, Jie Zhou, Conglin Zhang, Xuefeng Cui, Fang Ye, Laifei Cheng, Ralf Riedel

Summary: Polymer infiltration and pyrolysis is an effective method for preparing ceramic matrix composites. The transformation of polymer to ceramic during the process affects the residual stress and interface behavior in the composites.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Porous spheres enabling excellent high-temperature abradability and long lifetime for abradable seal coating

Yan Kang, Lin Chen, Chang-Jiu Li, Guan-Jun Yang

Summary: A novel abradable seal coating with low hardness and high bonding strength was successfully designed and prepared. This coating has significantly higher abradability and erosion resistance compared to metal-based coatings, and can retain excellent abradability and have a long lifetime during service.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Influence of raw material purity on microstructure and properties of calcia refractory

Qingzhong Song, Xiangdong Zha, Ming Gao, Yingche Ma

Summary: This study analyzes the influence of calcia refractory purity on the properties of calcia crucibles. Higher purity calcia results in well-developed grains and improved hydration resistance, leading to better high-temperature strength and thermal shock resistance. In contrast, lower purity calcia crucibles exhibit inferior properties. Therefore, high-purity calcia is considered a potential refractory for manufacturing oxide crucibles.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Ultra-low thermal conductivity and hydrophobic properties of high entropy β-type quaternary pyrosilicate

Sehreish Abrar, Faisal Nazeer, Zhuang Ma, Ling Liu, Abdul Malik, Mustafa Kamal, Abdullah G. Al-Sehemi

Summary: To raise the operating temperature of Si-based ceramic matrix composites (CMCs), researchers have applied thermal/environmental barrier coating (T/EBCs) materials, typically rare earth silicates. However, the high thermal conductivity and the mismatch of thermal expansion have been major challenges in developing new materials that can offer thermal insulation and environmental protection to CMCs. In this study, entropy engineering was used to create a multicomponent equi-atomic single-phase pyro silicate with extremely low thermal conductivity and enhanced water vapor corrosion resistance. The research findings show the potential of high entropy disilicates in achieving ultra-low thermal conductivity and low weight loss in corrosive environments.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Heterogeneous oxidation behavior and kinetic mechanisms of SiBCN ceramic with structure of MA-SiBCN coated by PDCs-SiBCN

Zi-bo Niu, Daxin Li, Dechang Jia, Zhihua Yang, Kunpeng Lin, Paolo Colombo, Ralf Riedel, Yu Zhou

Summary: In this study, SiBCN ceramics with a special structure were prepared to improve the oxidation resistance. The effect of the structure on oxidation behavior and kinetics was investigated, revealing that the special structure can effectively inhibit heterogeneous oxidation and enhance the oxide layer composition.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Low temperature densification and dielectric characterization of CeO2 ceramics

Melike Donmez, Metehan Erdogan, Cihangir Duran

Summary: The limited densification of CeO2 ceramics was improved by using an anorthite-based glass, resulting in high dielectric constant and quality factor with minimum dielectric loss. The CeO2-(anorthite-based) glass ceramic showed promising results in terms of low temperature densification and microwave properties.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

High speed impact and solid-state deposition of alumina particles: A molecular dynamics study

S. Rahmati, R. G. A. Veiga, J. Mostaghimi, T. Coyle, A. Dolatabadi

Summary: This study provides an atomic-scale description of the high-velocity impact of alpha-Al2O3 particles onto an alpha-Al2O3 substrate during Aerosol Deposition (AD). The results suggest that the crystal orientation plays a crucial role in both plasticity and damage of the nanoparticles. Impact velocity has a direct correlation with plasticity and fragmentation, but adhesion efficiency has only a marginal increase. The crucial element lies in the substrate's surface alterations caused by the fragments left on the substrate after impact.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Long-term ablation mechanisms of the YB4-Al2O3-Si3N4 modified Cf/ HfC-SiC composites at 2600 °C

Bo-Wen Chen, Yan-Mei Kan, De-Wei Ni, Chun-Jing Liao, Hong-Da Wang, Yu-Sheng Ding, Shao-Ming Dong

Summary: This study characterized the long-term and repeated ablation properties of modified Cf/HfC-SiC composites with YB4-Al2O3-Si3N4 under an air plasma torch. The structural stability and viscosity of the oxide layer were found to affect the ablation resistance of the composites. By forming nano c-HfO2 grains and high-viscosity Al-Si-Y-O glassy phase, the structural stability of the oxide layer was improved, resulting in enhanced ablation resistance. However, the oxidation of Si3N4 led to the formation of NO, NO2, and excessive SiO2 glassy phase, which resulted in a porous structure and reduced the viscosity of the oxide layer. Therefore, the addition of Si3N4 decreased the ablation resistance of the composites.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)

Article Materials Science, Ceramics

Structure characters, and thermal evolution of electrical and elastic behaviors in xBi(Ni1/2Hf1/2)O3-(1-x)PbTiO3 solid solutions with a tetragonal-pseudocubic phase boundary

Yongxing Wei, Huawei Zhang, Siyuan Dong, Changqing Jin, Chenxing Bai, Junle Dai, Zengzhe Xi, Zhonghua Dai, Zengyun Jian, Li Jin

Summary: In this study, solid solutions of xBi(Ni1/2Hf1/2)O-3-(1 - x)PbTiO3 (xBNH-PT) were synthesized to investigate their phase boundary behaviors and physical properties. The presence of a tetragonal-pseudocubic phase boundary and a spontaneous ferroelectric-relaxor transition at specific compositions were confirmed. The introduction of a tetragonal-pseudocubic phase boundary improved the piezoelectric properties and suppressed the spontaneous ferroelectric-relaxor transition.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2024)