4.6 Article

A Modeling Study of the Pore Size Evolution in Lithium-Oxygen Battery Electrodes

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 162, 期 8, 页码 A1636-A1645

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0921508jes

关键词

-

向作者/读者索取更多资源

This study develops a statistics model that investigates the microstructural evolution of porous electrodes and couples the micro structural changes with a computational fluid dynamics model to simulate the discharge performance of an 800-mu m-thick electrode at 1 A/m(2). This study considers the fact that pores that are too small to hold reactants, smaller than a critical pore size, do not contribute to the discharge of the battery. It is found that when the pore size of the electrode increases, the discharge capacity of the electrode first increases due to the improved mass transfer and then decreases due to the decrease of the effective surface area. For instance, when the critical pore size is set as 10 nm, the discharge capacity gradually increases from 86.6 to 214.8 mAh/gcarbon when the mean pore size of the electrode increases from 10 to 50 nm, followed by a capacity decrease to 150.8 mAh/gcarbon when the mean pore size further increases to 100 nm. This study also finds that alternating the discharge current between 0 ( open circuit condition) and the setting current rate can increase the discharge capacity of the lithium-oxygen battery because the oxygen concentration in the electrode increases during the open circuit condition. (C) The Author(s) 2015. Published by ECS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据