4.6 Article Proceedings Paper

Surface Structure and High-Voltage Charge/Discharge Characteristics of Al-Oxide Coated LiNi1/3Co1/3Mn1/3O2 Cathodes

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 162, 期 2, 页码 A3137-A3144

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/2.0131502jes

关键词

-

资金

  1. Research and Development Initiative for Scientific Innovation of New Generation Batteries (RISING project) of the New Energy and Industrial Technology Development Organization (NEDO), Japan

向作者/读者索取更多资源

A sol-gel method was used to fabricate Al-oxide coated LiNi1/3Co1/3Mn1/3O2 cathodes and their surface structure and high-voltage charge/discharge characteristics were evaluated with a view to their potential use in Li-ion batteries. Scanning transmission electron microscopy (STEM) revealed that a solid solution of LiAlO2-LiNi1/3Co1/3Mn1/3O2 is uniformly formed to a depth of several nanometers from the surface of Al-oxide coated LiNi1/3Co1/3Mn1/3O2. Furthermore, the discharge capacity and average discharge voltage of Al-oxide coated LiNi1/3Co1/3Mn1/3O2 is equal to or higher than uncoated LiNi1/3Co1/3Mn1/3O2 at a charge voltage of 4.5 to 4.9 V. It was also found that the Al-oxide coating significantly improves the cycle performance at a charge voltage of 4.5 to 4.7 V. A substantial fade in capacity observed during the cycling of bare LiNi1/3Co1/3Mn1/3O2 is attributed to an increase in polarization due to an increased charge transfer resistance (R-ct), which is indicative of degradation of the interface between the electrode and electrolyte. However, this increase in polarization and R-ct is effectively suppressed in the Al-oxide coated LiNi1/3Co1/3Mn1/3O2. This can be explained by an inhibition of the formation of a rock-salt-structured phase in the surface region of bare LiNi1/3Co1/3Mn1/3O2 during cycling, as confirmed by STEM and electron energy loss spectrometry. (C) The Author(s) 2015. Published by ECS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据