4.7 Article

Abnormal motor function and dopamine neurotransmission in DYTI ΔGAG transgenic mice

期刊

EXPERIMENTAL NEUROLOGY
卷 210, 期 2, 页码 719-730

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2007.12.027

关键词

dystonia; real-time RT-PCR; TOR1A; nigrostriatal; dopamine

资金

  1. NINDS NIH HHS [R03 NS050185, R01 NS048458-03, R01 NS048458-02, R03NS050185, R01 NS069936, R03 NS050185-02, R01NS048458, R01 NS048458] Funding Source: Medline

向作者/读者索取更多资源

A single GAG deletion in Exon 5 of the TOR1A gene is associated with a form of early-onset primary dystonia showing less than 40% penetrance. To provide a framework for cellular and systems study of DYT1 dystonia, we characterized the genetic, behavioral, morphological and neurochemical features of transgenic mice expressing either human wild-type torsinA (hWT) or mutant torsinA (hMT1 and hMT2) and their wildtype (WT) littermates. Relative to human brain, hMT1 mice showed robust neural expression of human torsinA transcript (3.90x). In comparison with WT littermates, hMT1 mice had prolonged traversal times on both square and round raised-beam tasks and more slips on the round raised-beam task. Although there were no effects of genotype on rotarod performance and rope climbing, hMT1 mice exhibited increased hind-base widths in comparison to WT and hWT mice. In contrast to several other mouse models of DYT1 dystonia, we were unable to identify either torsinA- and ubiquitin-positive cytoplasmic inclusion bodies or nuclear bleb formation in hMT1 mice. High-performance liquid chromatography with electrochemical detection was used to determine cerebral cortical, striatal, and cerebellar levels of dopamine (DA), norepinephrine, epinephrine, serotonin, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid. Although there were no differences in striatal DA levels between WT and hMT1 mice, DOPAC and HVA concentrations and DA turnover (DOPAC/DA and HVA/DA) were significantly higher in the mutants. Our findings in DYT1 transgenic mice are compatible with previous neuroimaging and postmortem neurochemical studies of human DYT1 dystonia. Increased striatal dopamine turnover in hMT1 mice suggests that the nigrostriatal pathway may be a site of functional neuropathology in DYT1 dystonia. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据