4.5 Article

An Examination of Anisotropic Void Evolution in Aluminum Alloy 7075

期刊

EXPERIMENTAL MECHANICS
卷 53, 期 9, 页码 1583-1596

出版社

SPRINGER
DOI: 10.1007/s11340-013-9765-y

关键词

Anisotropy; Void evolution; X-ray tomography

资金

  1. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

This paper investigates the anisotropy of void evolution and its relation with ductility in the high strength rolled aluminum alloy 7075-T7351. Smooth tension specimens are extracted from three principal material orientations, i.e. rolling (R), transverse (T), and short transverse (S). The mechanical behavior of these specimens is characterized and the varying ductility in the three orientations is clearly observed. Electron Backscattered Diffraction (EBSD), optical microscopy, and Scanning Electron Microscopy (SEM) are employed to characterize the grain structure and the size, location, and chemical composition of the intermetallic particles. In-situ X-ray Tomography (XCT) experiments are performed to obtain tomographic images of the specimens at critical loading steps. The radiographs acquired during the tensile test are then reconstructed and examined through quantitative analysis to partition particles and voids. These tomographic images enable us to visualize void evolution as the specimens are loaded along material orientations. The tomographic images clearly illustrate anisotropy in the void evolution and highlight the importance of local coalescence in developing 1D and 2D void structures prior to global coalescence. Fractography confirms tomography. These findings motivate model forms with appropriate internal variables to adequately describe the dominant mechanisms which govern anisotropic void evolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据