4.4 Article

Blockade of Connexin 43 Hemichannels Reduces Neointima Formation After Vascular Injury by Inhibiting Proliferation and Phenotypic Modulation of Smooth Muscle Cells

期刊

EXPERIMENTAL BIOLOGY AND MEDICINE
卷 234, 期 10, 页码 1192-1200

出版社

SAGE PUBLICATIONS LTD
DOI: 10.3181/0902-RM-80

关键词

smooth muscle cell; gap junction; connexin; neointimal formation

资金

  1. National Natural Science Foundation of China [30570765, 30700889]
  2. Natural Science Foundation of Chongqing, China [2005bb5304]

向作者/读者索取更多资源

Connexins 43 (Cx43) plays a key role in neointimal formation after vascular injury, but the mechanism still needs to be further explored. We hypothesized that the gap junction-dependent function of Cx43 to mediate intercellular communication has a crucial role in the development and progression of vascular diseases. The effect of intercellular communication mediated by Cx43 hemichannels on neointimal formation after vascular injury was investigated. Cx43 was overexpressed or knockdown in rat vascular smooth muscle cell (SMC) by transfection pcDNA-Cx43 plasmid or small interfering RNA (siRNA) against Cx43 (siCx43). SMC proliferation and marker genes expression after Cx43 alteration and blockade of the Cx43 hemichannel were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and RT-PCR. The effect of carbenoxolone on neointimal formation was investigated in carotid artery injured rat model. We demonstrated that overexpression of Cx43 promoted SMC proliferation, meanwhile, mRNA expression level of smooth muscle a-actin and calponin, which were important markers of SMC in a contractile state, were down-regulated in smooth muscle. Knockdown of Cx43 inhibited SMC proliferation but increased SMC marker genes expression level. Carbenoxolone (50 mu M) improved SMC contractile differentiation and inhibited its proliferation. Our data showed that carbenoxolone reduced neointimal formation after carotid artery injury. In summary, blockade of intercellular communication via Cx43 hemichannels reduces neointimal formation after vascular injury by inhibiting proliferation and phenotypic modulation of SMCs. Exp Biol Med 234:1192-1200, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据