4.4 Article

Role of oxidative stress and NFkB in hypoxia-induced pulmonary edema

期刊

EXPERIMENTAL BIOLOGY AND MEDICINE
卷 233, 期 9, 页码 1088-1098

出版社

SAGE PUBLICATIONS LTD
DOI: 10.3181/0712-RM-337

关键词

HAPE; NFkB; oxidative stress; proinflammatory cytokines

向作者/读者索取更多资源

Hypoxia is well known to increase the free radical generation in the body, leading to oxidative stress. In the present study, we have determined whether the increased oxidative stress further upregulates the nuclear transcription factor (NFkB) in the development of pulmonary edema. The rats were exposed to hypobaric hypoxia at 7620 m (280 mm Hg) for different durations, that is, 3 hrs, 6 hrs, 12 hrs, and 24 hrs at 25 +/- 1 degrees C. The results revealed that exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, with time up to 6 hrs (256.38 +/- 61 rfu/g) as compared with control (143.63 +/- 60.1 rfu/g). There was a significant increase in reactive oxygen species, lipid peroxidation, and superoxide dismutase levels, with a concurrent decrease in lung glutathione peroxidase activity. There was 13-fold increase in the expression of NFkB level in nuclear fraction of lung homogenates of hypoxic animals over control rats. The DNA binding activity of NFkB was found to be increased significantly (P < 0.001) in the lungs of rats exposed to hypoxia as compared with control. Further, we observed a significant increase in proinflammatory cytokines such as IL-1, IL-6, and TNF-alpha with concomitant upregulation of cell adhesion molecules such as ICAM-I, VCAM-I, and P-selectin in the lung of rats exposed to hypoxia as compared with control. Interestingly, pretreatment of animals with curcumin (NFkB blocker) attenuated hypoxia-induced vascular leakage in lungs with concomitant reduction of NFkB levels. The present study therefore reveals the possible involvement of NFkB in the development of pulmonary edema.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据