4.3 Article

Metabolic engineering of Saccharomyces cerevisiae for accumulating pyruvic acid

期刊

ANNALS OF MICROBIOLOGY
卷 65, 期 4, 页码 2323-2331

出版社

SPRINGER
DOI: 10.1007/s13213-015-1074-5

关键词

Saccharomyces cerevisiae; Pyruvic acid; PDC1; PDC5; Gene disruption; Metabolic engineering

资金

  1. National High-tech R&D Program of China [2012AA021302]

向作者/读者索取更多资源

Pyruvate decarboxylase (PDC), a key enzyme in alcoholic fermentation in Saccharomyces cerevisiae, can degrade pyruvic acid to further convert acetaldehyde into ethanol. The main structural genes encoding PDC are PDC1 and PDC5. In this study, metabolic engineering principles were used to block the further metabolism of pyruvic acid; Saccharomyces cerevisiae Y2-1 with PDC1 disruption and Y2-15 with both PDC1 and PDC5 disruption were obtained using the LiAc/SS carrier DNA/PEG method. The specific PDC activity of mutant S. cerevisiae Y2-1 decreased by 31 % compared to that of the parent strain Y2, while specific PDC activity was barely detectable in mutant S. cerevisiae Y2-15. Moreover, the mutant Y2-1 with PDC1 disruption displayed no obvious effect on the rate of growth in the yeast nitrogen base with glucose (YNBG) medium, but the growth rate of S. cerevisiae Y2-15 was significantly lower than that of the parent strain Y2. Finally, through optimization of the fermentation medium, the accumulation of pyruvic acid by Y2-15 increased to 24.65 g/L over a period of 96 h, 16.86-fold higher than with the parental strain Y2 by shake flask cultivation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据