4.5 Article

Effects of orthoses on three-dimensional load-displacement properties of the cervical spine

期刊

EUROPEAN SPINE JOURNAL
卷 22, 期 1, 页码 169-177

出版社

SPRINGER
DOI: 10.1007/s00586-012-2552-0

关键词

Cervical collar; Cervicothoracic orthosis; Biomechanics; Spine; Motion

向作者/读者索取更多资源

Our objectives were to develop a skull-neck-thorax model capable of quantifying spinal motions in an intact human cadaver neck with and without cervical orthoses, determine the effect of orthoses on three-dimensional load-displacement properties of all cervical spinal levels, and compare and contrast our results with previously reported in vivo data. Load input flexibility tests were performed to evaluate two cervical collars (Vista(A (R)) collar and Vista(A (R)) Multipost collar) and two cervicothoracic orthoses (CTOs: Vista(A (R)) TS and Vista(A (R)) TS4) using the skull-neck-thorax model with 10 intact whole cervical spine specimens. The physiologic range of motion (RoM) limit was the peak obtained from flexibility tests with no orthosis. Pair-wise repeated measures, analysis of variance (p < 0.05), and Bonferroni post hoc tests determined significant differences in average peak RoM at each spinal level among the experimental conditions. Significant reductions below physiologic limits were observed due to all orthoses in: three-dimensional head/T1 RoMs, all sagittal intervertebral RoMs, and lateral bending at C4/5 through C7/T1. Both CTOs significantly reduced C6/7 sagittal RoM as compared to both collars. Intervertebral RoMs with the orthoses could not be differentiated from physiologic limits at the upper cervical spine in lateral bending and throughout the entire cervical spine in axial rotation, with the exception of C1/2. Our results indicate that cervical orthoses effectively immobilized the entire cervical spine in flexion/extension and the lower cervical spine in lateral bending. The CTOs improved immobilization of the lower cervical spine in flexion/extension as compared to the collars. The orthoses were least effective at restricting lateral bending of the upper spinal levels and axial rotation of all spinal levels, except C1/2. Understanding immobilization provided by orthoses will assist clinicians in selecting the most appropriate brace based upon patient-specific immobilization requirements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据