4.7 Article

Glass transition and polymer dynamics in silver/poly(methyl methacrylate) nanocomposites

期刊

EUROPEAN POLYMER JOURNAL
卷 47, 期 8, 页码 1514-1525

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.eurpolymj.2011.06.001

关键词

Ag nanoparticles; Polymer dynamics; Glass transition; Segmental relaxation; Free volume

资金

  1. European Community [218331]
  2. Spanish Ministry of Science and Innovation [EUI2008-00126]
  3. Conselleria de Sanidad (Generalitat Valenciana)
  4. Instituto de Salud Carlos III (Ministry of Science and Innovation)

向作者/读者索取更多资源

Dynamic mechanical-thermal analysis (DMTA), differential scanning calorimetry (DSC), thermally stimulated depolarization currents (TSDC) and, mainly, broadband dielectric relaxation spectroscopy (DRS) were employed to investigate in detail glass transition and polymer dynamics in silver/poly(methyl methacrylate) (Ag/PMMA) nanocomposites. The nanocomposites were prepared by radical polymerization of MMA in the presence of surface modified Ag nanoparticles with a mean diameter of 5.6 nm dispersed in chloroform. The fraction of Ag nanoparticles in the final materials was varied between 0 and 0.5 wt%, the latter corresponding to 0.055 vol%. The results show that the nanoparticles have practically no effect on the time scale of the secondary beta and gamma relaxations, whereas the magnitude of both increases slightly but systematically with increasing filler content. The segmental alpha relaxation, associated with the glass transition, becomes systematically faster and stronger in the nanocomposites. The glass transition temperature T(g) decreases with increasing filler content of the nanocomposites up to about 10 degrees C. in good correlation by the four techniques employed. Finally, the elastic modulus decreases slightly but systematically in the nanocomposites, both in the glassy and in the rubbery state. The results are explained in terms of plasticization of the PMMA matrix, due to constraints imposed to packing of the chains by the Ag nanoparticles, and, at the same time, of the absence of strong polymer-filler interactions, due to the surface modification of the Ag nanoparticles by oleylamine at the stage of preparation. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据