4.3 Article

Structuring from nanoparticles in oil-based ferrofluids

期刊

EUROPEAN PHYSICAL JOURNAL E
卷 34, 期 3, 页码 -

出版社

SPRINGER
DOI: 10.1140/epje/i2011-11028-5

关键词

-

资金

  1. Research Council of Norway [171300]
  2. Slovak Academy of Sciences [VEGA 2/0077/09]
  3. Nanofluid, Centre of Excellence [APVV 0509-07, MNT-ERA Net, SK-PL-0069-09/8158/2010]

向作者/读者索取更多资源

The effect of magnetic field on the structure formation in an oil-based magnetic fluid with various concentrations of magnetite particles was studied. The evaluation of the experimental data obtained from small-angle X-ray scattering and ultrasonic attenuation indicates the formation of chain-like aggregates composed of magnetite particles. The experimental data obtained from ultrasonic spectroscopy fit well with the recent theoretical model by Shliomis, Mond and Morozov but only for a diluted magnetic fluid. In this model it is assumed that a dimer is the main building block of a B-field-induced chain-like structure, thus the estimation of the nematic order parameter does not depend on the actual length of the structure. The scattering method used reveals information about the aggregated structure size and relative changes in the degree of anisotropy in qualitative terms. The coupling constant lambda, concentrations phi, average particle size d and its polydispersity sigma were initially obtained using the vibrating sample magnetometry and these results were further confirmed by rheometry and scattering methods. Both the particles' orientational distribution and the nematic order parameter S were inferred from the ultrasonic measurements. The investigation of SAXS patterns reveals the orientation and sizes of aggregated structures under application of different magnetic-field strengths. In addition, the magnetic-field-dependent yield stress was measured, and a relationship between the yield stress and magnetic-field strength up to 0.5T was established.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据