4.2 Article

Topological phase transition and electrically tunable diamagnetism in silicene

期刊

EUROPEAN PHYSICAL JOURNAL B
卷 85, 期 11, 页码 -

出版社

SPRINGER
DOI: 10.1140/epjb/e2012-30577-0

关键词

-

资金

  1. Ministry of Education, Science, Sports and Culture [22740196]
  2. Grants-in-Aid for Scientific Research [22740196] Funding Source: KAKEN

向作者/读者索取更多资源

Silicene is a monolayer of silicon atoms forming a honeycomb lattice. The lattice is actually made of two sublattices with a tiny separation. Silicene is a topological insulator, which is characterized by a full insulating gap in the bulk and helical gapless edges. It undergoes a phase transition from a topological insulator to a band insulator by applying external electric field. Analyzing the spin Chern number based on the effective Dirac theory, we find the origin to be a pseudospin meron in the momentum space. The peudospin degree of freedom arises from the two-sublattice structure. Our analysis makes clear the mechanism how a phase transition occurs from a topological insulator to a band insulator under increasing electric field. We propose a method to determine the critical electric field with the aid of diamagnetism of silicene. Diamagnetism is tunable by the external electric field, and exhibits a singular behaviour at the critical electric field. Our result is important also from the viewpoint of cross correlation between electric field and magnetism. Furthermore, nano-electromechanic devices transforming electric force to mechanical force may be feasible. Our finding will be important for future electro-magnetic correlated devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据