4.8 Article

Critical Factors Driving the High Volumetric Uptake of Methane in Cu3(btc)2

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 137, 期 33, 页码 10816-10825

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b06657

关键词

-

资金

  1. Nanoporous Materials Genome Center - U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-FG02-12ER16362]
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]
  3. NIST/NSF REU Summer Undergraduate Research Fellowship (SURF) - Center for High Resolution Neutron Scattering (CHRNS) [DMR-09414772]
  4. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

A thorough experimental and computational study has been carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu-3(btc)(2) (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Methane adsorption data measured at several temperatures for Cu-3(btc)(2), and its isostructural analogue Cr-3(btc)(2), show that there is little difference in volumetric adsorption capacity when the metal center is changed. In situ neutron powder diffraction data obtained for both materials were used to locate four CD4 adsorption sites that fill sequentially. This data unequivocally shows that primary adsorption sites around, and within, the small octahedral cage in the structure are favored over the exposed Cu2+ or Cr2+ cations. These results are supported by an exhaustive parallel computational study, and contradict results recently reported using a time-resolved diffraction structure envelope (TRDSE) method. Moreover, the computational study reveals that strong methane binding at the open metal sites is largely due to methane-methane interactions with adjacent molecules adsorbed at the primary sites instead of an electronic interaction with the metal center. Simulated methane adsorption isotherms for Cu-3(btc)(2) are shown to exhibit excellent agreement with experimental isotherms, allowing for additional simulations that show that modifications to the metal center, ligand, or even tuning the overall binding enthalpy would not improve the working capacity for methane storage over that measured for Cu-3(btc)(2) itself.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据