4.7 Article

Prediction of oral absorption of cinnarizine - A highly supersaturating poorly soluble weak base with borderline permeability

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejpb.2014.08.011

关键词

Dissolution; Supersaturation; Precipitation; Cinnarizine; Permeability; Absorption; Physiologically based pharmacokinetic model

向作者/读者索取更多资源

Two important driving forces for oral absorption of active pharmaceutical ingredients are drug dissolution and permeability in the gastrointestinal tract. Poorly soluble weak bases typically exhibit high solubility under fasted gastric conditions. However, the solubility of such drugs usually decreases drastically in the fasted small intestine, constraining drug absorption. Since there is a discrepancy in solubility between the fasted state stomach and intestine, it is crucial to examine the influence of dissolution, supersaturation and precipitation on the oral absorption of poorly soluble weak bases during and after fasted state gastric emptying. Cinnarizine is a poorly soluble weak base with borderline permeability, exhibiting supersaturation and precipitation under simulated fasted state gastric emptying conditions. Interestingly, supersaturation and precipitation of cinnarizine under fed state conditions is not expected to occur, since the drug shows good solubility in fed state biorelevant media and exhibits a positive food effect in pharmacokinetic studies. The present work is aimed at investigating the dissolution, supersaturation and precipitation behavior of marketed cinnarizine tablets under fasted and fed state conditions using biorelevant dissolution and transfer methods. In order to predict the in vivo performance of these cinnarizine formulations, the in vitro results were then coupled with different physiologically based pharmacokinetic (PBPK) models, which considered either only dissolution or a combination of dissolution, supersaturation and precipitation kinetics. The results of the in silico predictions were then compared with in vivo observations. The study revealed that under fasting conditions, plasma profiles could be accurately predicted only when supersaturation and precipitation as well as dissolution were taken into account. It was concluded that for poorly soluble weak bases with moderate permeability, supersaturation and precipitation during fasted state gastric emptying may have an essential influence on oral drug absorption and thus on in vivo drug performance. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据