4.5 Article

The effect of Parkinson's disease and Huntington's disease on human visuomotor learning

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 38, 期 6, 页码 2933-2940

出版社

WILEY
DOI: 10.1111/ejn.12288

关键词

basal ganglia; cerebellum; Huntington's disease; learning dissociation; Parkinson's disease; sensorimotor learning

资金

  1. CONACYT
  2. PAPIIT-DGAPA [IN202810]
  3. [102314 COVECYT 127808]

向作者/读者索取更多资源

Visuomotor adaptation is often driven by error-based (EB) learning in which signed errors update motor commands. There are, however, visuomotor tasks where signed errors are unavailable or cannot be mapped onto appropriate motor command changes, rendering EB learning ineffective; and yet, healthy subjects can learn in these EB learning-free conditions. While EB learning depends on cerebellar integrity, the neural bases of EB-independent learning are poorly understood. As basal ganglia are involved in learning mechanisms that are independent of signed error feedback, here we tested whether patients with basal ganglia lesions, including those with Huntington's disease and Parkinson's disease, would show impairments in a visuomotor learning task that prevents the use of EB learning. We employed two visuomotor throwing tasks that were similar, but were profoundly different in the resulting visual feedback. This difference was implemented through the introduction of either a lateral displacement of the visual field via a wedge prism (EB learning) or a horizontal reversal of the visual field via a dove prism (non-EB learning). Our results show that patients with basal ganglia degeneration had normal EB learning in the wedge prism task, but were profoundly impaired in the reversing prism task that does not depend on the signed error signal feedback. These results represent the first evidence that human visuomotor learning in the absence of EB feedback depends on the integrity of the basal ganglia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据