4.5 Article

Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction

期刊

EUROPEAN JOURNAL OF HEART FAILURE
卷 15, 期 2, 页码 150-157

出版社

WILEY
DOI: 10.1093/eurjhf/hfs172

关键词

Heart failure; Mitochondrial function; Beta-oxidation; Substrates; Mitochondrial creatine kinase

资金

  1. Nordea Foundation
  2. Lundbeck Foundation
  3. Ketty and Ejvind Lyngsbaeks Foundation

向作者/读者索取更多资源

Heart failure (HF) with left ventricular systolic dysfunction (LVSD) is associated with a shift in substrate utilization and a compromised energetic state. Whether these changes are connected with mitochondrial dysfunction is not known. We hypothesized that the cardiac phenotype in LVSD could be caused by reduced mitochondrial oxidative phosphorylation (OXPHOS) capacity and reduced mitochondrial creatine kinase (miCK) capacity. The study aim was to test mitochondrial OXPHOS capacity in LVSD myocardium compared with OXPHOS capacity in a comparable patient group without LVSD. Myocardial biopsies were obtained from the left ventricle during cardiac valve or left ventricular assist device (LVAD) surgery. Patients were stratified according to left ventricular ejection fraction (LVEF) into LVSD (LVEF 45, n 14) or CONTROL (LVEF 45, n 15). Mitochondrial respiration was measured in muscle fibres with addition of non-fatty acid substrates or octanoyl-l-carnitine, a medium chain fatty acid (MCFA). The in situ enzyme capacity of miCK was determined from APD titrations in the presence or absence of creatine. Maximal OXPHOS capacity with non-fatty acid substrates was lower in the LVSD group compared with the CONTROL group (P 0.05). ADP sensitivity always increased significantly (P 0.05) with the addition of creatine, after which the sensitivity was highest (P 0.05) in LVSD compared with CONTROL. The stimulation of OXPHOS from octanoyl-l-carnitine titrations elicited approximate to 40 lower respiration in LVSD compared with CONTROL (P 0.05). Human LVSD is associated with markedly diminished OXPHOS capacity, particularly in MCFA oxidation. This offers a candidate mechanism for a compromised energetic state and decreased reliance on fatty acid utilization in HF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据