4.5 Article

The Role of Kelvin Number on Bulge Formation from Estuarine Buoyant Outflows

期刊

ESTUARIES AND COASTS
卷 32, 期 4, 页码 709-719

出版社

SPRINGER
DOI: 10.1007/s12237-009-9162-z

关键词

Buoyant outflows; Estuaries; Coastal currents; Bulges

向作者/读者索取更多资源

This investigation examines the influence of the Kelvin number (K) and fractional depth (h/D) on bulge formation from buoyant outflows from an estuary or strait perpendicular to the coastline. Here K = W/R is the ratio of the width (W) at the mouth of the estuary to the deformation radius (R), and h and D are the buoyant layer and ambient ocean depths, respectively. Measurements of velocity and lateral shear (a parts per thousand relative vorticity zeta) at the baymouth are reported for experiments on a flat-bottomed rotating turntable. The form of the velocity profile across the mouth depends on the value of K. The buoyant outflow flows across the entire width of the estuary for narrow estuaries (i.e., K a parts per thousand currency signaEuro parts per thousand 1). In contrast, for wide estuaries (K > 2), dense oceanic water inflows on the left and the buoyant waters outflow on the right (looking seaward). Velocity profiles of the inflowing oceanic waters are laterally uniform with velocities (V/C a parts per thousand aEuro parts per thousand a'0.4), whereas velocity profiles of the outflowing buoyant waters are laterally sheared with peak velocities of V/C a parts per thousand aEuro parts per thousand 1.0 at the right hand exit. The flow pathways when bulges form comprises an anticyclonic turn offshore of the mouth and a downshelf propagating coastal current. Anticyclonic bulges form for surface-advected outflows h/D < 0.25. Anticyclonic bulges do not form for sufficiently large magnitudes of non-dimensional relative vorticity zeta/f (> 0.4), and an additional flow pathway is that buoyant waters recirculate back cyclonically into the estuary at the left-hand (upshelf) side of the estuary. The offshore extent of buoyant waters associated with this cyclonic recirculation can be as large as 7R.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据