4.5 Article

Epigenetic regulation of sensory neurogenesis in the dorsal root ganglion cell line ND7 by folic acid

期刊

EPIGENETICS
卷 6, 期 10, 页码 1207-1216

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/epi.6.10.17592

关键词

folic acid; Pax3; Hes1; Neurog2; NeuroD1; chromatin; dorsal root ganglion; ND7; H3K27me; H3K18Ac

资金

  1. McLone Professorship Fund
  2. State of Illinois Excellence in Academic Medicine
  3. Spastic Paralysis Research Foundation of Illinois-eastern Iowa District of Kiwanis
  4. Spina Bifida Association
  5. Chou Funds

向作者/读者索取更多资源

The epigenetic mechanism of folic acid (FA) action on dorsal root ganglion (DRG) cell proliferation and sensory neuron differentiation is not well understood. In this study the ND7 cell line, derived from DRG cells, was used to elucidate this mechanism. In ND7 cells differentiated with dbcAMP and NGF, Hes1 and Pax3 levels decreased, whereas Neurog2 levels showed a modest increase. Chromatin immunoprecipitation (ChIP) assays examining epigenetic marks at the Hes1 promoter showed that FA favored increased H3K9 and H3K19 acetylation and decreased H3K27 methylation. Hence, FA plays a positive role in cell proliferation. In differentiated ND7 cells, H3K27 methylation decreased, whereas H3K9 and H3K18 acetylation increased at the Neurog2 promoter. FA did not favor this phenotypic outcome. Additionally, in differentiated ND7 Neurog2 associated with the NeuroD1 promoter, FA decreased this association. The results suggest that the switch from proliferation to sensory neuron differentiation in DRG cells is regulated by alterations in epigenetic marks, H3K9/18 acetylation and H3K27 methylation, at Hes1 and Neurog2 promoters, as well as by Neurog2 association with NeuroD1 promoter. FA although positive for proliferation, does not appear to play a role in differentiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据