4.5 Article

Inhibition of enzymatic cellulolysis by phenolic compounds

期刊

ENZYME AND MICROBIAL TECHNOLOGY
卷 48, 期 3, 页码 239-247

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.enzmictec.2010.11.004

关键词

Cellulase; Inhibition; Phenolic; Cellulose hydrolysis; Biomass conversion

资金

  1. Department of Energy [DE-FC36-08GO18080]
  2. agency of the United States Government

向作者/读者索取更多资源

Phenolics derived from lignin and other plant components can pose significant inhibition on enzymatic conversion of cellulosic biomass materials to useful chemicals. Understanding the mechanism of such inhibition is of importance for the development of viable biomass conversion technologies. In native plant cell wall, most of the phenolics and derivatives are found in polymeric lignin. When biomass feed-stocks are pretreated (prior to enzymatic hydrolysis), simple or oligomeric phenolics and derivatives are often generated from lignin modification/degradation, which can inhibit biomass-converting enzymes. To further understand how such phenolic substances may affect cellulase reaction, we carried out a comparative study on a series of simple and oligomeric phenolics representing or mimicking the composition of lignin or its degradation products. Consistent to previous studies, we observed that oligomeric phenolics could exert more inhibition on enzymatic cellulolysis than simple phenolics. Oligomeric phenolics could inactivate cellulases by reversibly complexing them. Simple and oligomeric phenolics could also inhibit enzymatic cellulolysis by adsorbing onto cellulose. Individual cellulases showed different susceptibility toward these inhibitions. Polyethylene glycol and tannase could respectively bind and degrade the studied oligomeric phenolics, and by doing so mitigate the oligomeric phenolic's inhibition on cellulolysis. (c) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据