4.3 Article

Considering covariates in the covariance structure of spatial processes

期刊

ENVIRONMETRICS
卷 22, 期 4, 页码 487-500

出版社

WILEY
DOI: 10.1002/env.1101

关键词

anisotropy; deformation; manifold; non-stationarity; projection

资金

  1. FAPERJ
  2. CNPq

向作者/读者索取更多资源

In spatial statistics one usually assumes that observations are partial realizations of a stochastic process {Y(x), x is an element of R-C}, where commonly C = 2, and the components of the location vector x are geographical coordinates. Frequently, it is assumed that Y(.) follows a Gaussian process (GP) with stationary covariance structure. In this setting the usual aim is to make spatial interpolation to unobserved locations of interest, based on observed values at monitored locations. This interpolation is heavily based on the specification of the mean and covariance structure of the GP. In environmental problems the assumption of stationary covariance structures is commonly violated due to local influences in the covariance structure of the process. We propose models which relax the assumption of stationary GP by accounting for covariate information in the covariance structure of the process. Usually at each location x, covariates related to Y(.) are also observed. We initially propose the use of covariates to allow the latent space model of Sampson and Guttorp to be of dimension C>2. Then we discuss a particular case of the latent space model by using a representation projected down from C dimensions to 2 in order to model the 2D correlation structure better. Inference is performed under the Bayesian paradigm, and Markov chain Monte Carlo methods are used to obtain samples from the resultant posterior distributions under each model. As illustration of the proposed models, we analyse solar radiation in British Columbia, and mean temperature in Colorado. Copyright (C) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据