4.4 Article

Mineralization of p-chlorophenol in water solution by AOPs based on UV irradiation

期刊

ENVIRONMENTAL TECHNOLOGY
卷 33, 期 1, 页码 27-36

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/09593330.2010.504233

关键词

AOPs; UV-irradiation; p-chlorophenol; TOC; AOX; toxicity

资金

  1. Ministry of Science, Education and Sport, Republic of Croatia [0125-018]

向作者/读者索取更多资源

Protection of clean aquifers requires radical minimization of water consumption, overall reduction of wastewater and, furthermore, minimization of wastewater loading. Many organic pollutants in wastewater present a specific problem because of their toxicity, bioaccumulation and poor biodegradability. The scope of this paper is to investigate and identify the benefits offered by advanced oxidation processes (AOPs) as destructive methods for treatment of wastewater loaded with recalcitrant organic pollutants. The study was performed on model wastewater containing p-chlorophenol as a representative of organic chemical industry intermediates. Several UV based AOPs were studied: UV, UV/H2O2, UV/O-3, UV/H2O2/O-3 and UV/Fenton. Optimal process conditions for the highest mineralization efficiency in the investigated range (pH, [H2O2] and [Fe2+]) have been determined on the basis of HPLC measurements and the following ecological parameters: total organic carbon (TOC), adsorbable organic halides (AOX), chemical oxygen demand (COD) and biochemical oxygen demand (BOD5). Toxicity is one of the most important ecological parameters in determining the level of water pollution. In this study, toxicity tests were performed on the zooplankton Daphnia magna in order to evaluate efficiency of the applied treatments. The UV/Fenton and UV/H2O2/O-3 processes were found to be the most appropriate processes for degradation and mineralization of p-chlorophenol. Complete degradation was achieved after 15 minutes of UV/Fenton process treatment, while 92.1% TOC and 98.3% AOX removals were obtained after treatment of 60 minutes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据