4.7 Article Proceedings Paper

TiO2 sol-gel for formaldehyde photodegradation using polymeric support: photocatalysis efficiency versus material stability

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-014-2683-4

关键词

TiO2 sol-gel; Formaldehyde; Polypropylene; Photodegradation; Indoor air; Photostability

资金

  1. CNPq
  2. FAPERJ

向作者/读者索取更多资源

Photocatalysts supported on polymers are not frequently used in heterogeneous photocatalysis because of problems such as wettability and stability that affect photocatalysis conditions. In this work, we used polypropylene as support for TiO2 sol-gel to evaluate its stability and efficiency under UV radiation. We also tested the effect of the thermo-pressing PP/TiO2 system on the photocatalytic efficiency and stability under UV radiation. The films were characterized by scanning electron microscopy (SEM), UV-Vis spectroscopy and X-ray diffraction (XRD). The SEM micrographs showed that the films of TiO2 sol-gel onto PP has approximately 1.0-mu m thick and regular surface and the generation of polypropylene nanowires on hot-pressed samples. XRD showed the formation of TiO2 anatase on the surface of the films made by dip-coating. All photocatalysts were tested in decontaminating air-containing gaseous formaldehyde (70 ppmv) presenting degradation of the target compound to the limit of detection. The photocatalysts showed no deactivation during the entire period tested (30 h), and its reuse after washing showed better photocatalytic performance than on first use. The photocatalyst showed the best results were tested for 360 h with no observed deactivation. Aging studies showed that the film of TiO2 causes different effects on the photostability of composites, with stabilizing effect when exposed to most energetic UVC radiation (lambda max = 254 nm) and degradative effects when exposed to UVA radiation (lambda max = 365 nm).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据