4.5 Article

Modeling flow-induced crystallization in isotactic polypropylene at high shear rates

期刊

JOURNAL OF RHEOLOGY
卷 59, 期 3, 页码 613-642

出版社

JOURNAL RHEOLOGY AMER INST PHYSICS
DOI: 10.1122/1.4913696

关键词

-

资金

  1. STW [08083, 07730]

向作者/读者索取更多资源

A model is presented to describe flow-induced crystallization in isotactic polypropylene at high shear rates. This model incorporates nonlinear viscoelasticity, compressibility, and nonisothermal process conditions due to shear heating and heat release due to crystallization. Flow-induced nucleation occurs with a rate coupled to the chain backbone stretch associated with the longest mode relaxation time of the polymer melt, obtained from a viscoelastic constitutive model. Flow-induced nuclei propagate in flow direction with a speed related to shear rate, thus forming shish, which increase the viscosity of the material. The viscosity change with formation of oriented fibrillar crystals (known as shish) is implemented in a phenomenological manner; shish act as a suspension of fibers with radius equivalent to the radius of the shish plus the attached entangled molecules? The model is implemented in a 2D finite element code and validated with experimental data obtained in a channel flow geometry. Quantitative agreement is observed in terms of pressure drop, apparent crystallinity, parent/daughter ratio, Hermans' orientation, and shear layer thickness. Moreover, simulations for lower flow rates are performed and the results are compared, in a qualitative sense, to experiments from literature. (C) 2015 The Society of Rheology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据