4.7 Article

Novel degradation pathway of 4-chloro-2-aminophenol via 4-chlorocatechol in Burkholderia sp. RKJ 800

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 21, 期 3, 页码 2298-2304

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-013-2167-y

关键词

4-Chlorocatechol; Biodegradation; Bioremediation; Microcosm

资金

  1. University Grants Commission, New Delhi

向作者/读者索取更多资源

Burkholderia sp. RKJ 800 utilized 4-chloro-2-aminophenol (4C2AP) as the sole carbon and energy source and degraded it with release of chloride and ammonium ions. The metabolic pathway of degradation of 4C2AP was studied and a novel intermediate, 4-chlorocatechol was identified as a major degradation product of 4C2AP using high-performance liquid chromatography and gas chromatography-mass spectrometry. Enzyme activities for 4C2AP-deaminase and 4-chlorocatechol-1,2-dioxygenase were detected in the crude extracts of the 4C2AP-induced cells of strain RKJ 800. The activity of the 4C2AP-deaminase confirmed the formation of 4-chlorocatechol from 4C2AP and the 4-chlorocatechol-1,2-dioxygenase activity suggested the cleavage of 4-chlorocatechol into 3-chloro-cis,cis-muconate. On the basis of the identified metabolites, we have proposed a novel degradation pathway of 4C2AP for Burkholderia sp. RKJ 800. Furthermore, the potential of Burkholderia sp. RKJ 800 to degrade 4C2AP in soil was also investigated using microcosm studies under laboratory conditions. The results of microcosm studies conclude that Burkholderia sp. RKJ 800 was able to degrade 4C2AP in soil and may be used to remediate 4C2AP-contaminated site. This is the first report of (1) the formation of 4-chlorocatechol and 3-chloro-cis,cis-muconate in the degradation pathway of 4C2AP and (2) bioremediation of 4C2AP by any bacterium.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据