4.7 Article

Phytoremediation of a sulphonated azo dye Green HE4B by Glandularia pulchella (Sweet) Tronc. (Moss Verbena)

期刊

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
卷 18, 期 8, 页码 1360-1373

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-011-0491-7

关键词

Phytoremediation; Glandularia pulchella (Sweet) Tronc.; GreenHE4B; Decolorization; Textile dyeing effluent

资金

  1. Department of Biotechnology (DBT), New Delhi, India

向作者/读者索取更多资源

Purpose The dyes and dye stuffs present in effluents released from textile dyeing industries are potentially mutagenic and carcinogenic. Phytoremediation technology can be used for remediating sites contaminated with such textile dyeing effluents. The purpose of the work was to explore the potential of Glandularia pulchella (Sweet) Tronc. to decolorize different textile dyes, textile dyeing effluent, and synthetic mixture of dyes. Methods Enzymatic analysis of the plant roots was performed before and after decolorization of dye Green HE4B. Analysis of the metabolites of Green HE4B degradation was done using UV-Vis spectroscopy, high-performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and gas chromatography-mass spectroscopy (GC-MS). The ability of the plant to decolorize and detoxify a textile dyeing effluent and a synthetic mixture of dyes was studied by a determination of the American Dye Manufacturer's Institute (ADMI), biological oxygen demand (BOD), and chemical oxygen demand (COD). Phytotoxicity studies were performed. Result Induction of the activities of lignin peroxidase, laccase, tyrosinase, and 2,6-dichlorophenol indophenol reductase was obtained, suggesting their involvement in the dye degradation. UV-Vis spectroscopy, HPLC, and FTIR analysis confirmed the degradation of the dye. Three metabolites of the dye degradation were identified, namely, 1-(4-methylphenyl)-2-{7-[(Z)-phenyldiazenyl] naphthalen-2-yl} diazene; 7,8-diamino-2-(phenyldiazenyl) naphthalen-1-ol; and (Z)-1,1'-naphthalene-2,7-diylbis (phenyldiazene) using GC-MS. ADMI, BOD, and COD values were reduced. The non-toxic nature of the metabolites of Green HE4B degradation was revealed by phytotoxicity studies. Conclusion This study explored the phytoremediation ability of G. pulchella (Sweet) Tronc. in degrading Green HE4B into non-toxic metabolites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据