4.7 Article

Effect-related monitoring: estrogen-like substances in groundwater

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-009-0234-1

关键词

17 beta-estradiol; Contaminated site; Endocrine disruptors; E-screen assay; Gas chromatography/mass spectrometry (GC/MS); Groundwater; Guide value; Landfill; Xenoestrogens

资金

  1. Anthony Rackstraw, Weinheim
  2. Heike Schuler
  3. ARCADIS
  4. CONSULT GmbH, Karlsruhe
  5. LUBW

向作者/读者索取更多资源

Concentration monitoring as a basis for risk assessment is a valid approach only if there is an unambiguous relation between concentration and effect. In many cases, no such unambiguous relation exists, since various substances can exert the same effect with differing potencies. If some or all of these substances contributing to a biological effect are unknown, effect-related monitoring becomes indispensable. Endocrine-disrupting substances in water bodies, including the groundwater, are a prominent example of such a case. The aim of the investigations described here was to detect hormonally active substances in the groundwater downstream of obsolete landfills by using the E-screen assay and to possibly assign the biological effect to individual chemical compounds by means of instrumental analyses carried out in parallel. Grab samples of the groundwater were collected downstream from abandoned landfills and prepared by liquid/liquid extraction. The total estrogenic activity in these samples was determined in vitro by applying the E-screen assay. The human breast cancer cells (MCF-7) used in the E-screen proliferate in response to the presence of estrogenically active compounds. Expressed in concentration units of the reference substance 17 beta-estradiol (E2), the test system allows the quantification of estrogenicity with a limit of detection (LOD) in the range of 0.1 ng/L. Aliquots of the samples were screened using gas chromatography/mass spectrometry (GC/MS) in order to quantify known estrogenically active substances and to identify unknown compounds. Estrogen-positive samples were extracted at different pH values, split into acidic, neutral, and basic fractions and analyzed by GC/MS, searching for individual components that display estrogenic activity. Estrogenic activity exceeding the LOD and the provisional benchmark of 0.5 ng E2/L was found at three out of seven abandoned waste disposal sites tested. The low concentrations of known xenoestrogens such as bisphenol-A, nonylphenols, or phthalic acid esters determined by GC/MS, however, were not sufficient to explain the detected activity. Neither natural nor synthetic hormones have caused the activity because these chemical structures are readily degradable and cannot persist in abandoned landfills for decades. The highest activity in the E-screen assay was found in the acidic fractions. Hydroxy-polychlorinated biphenyls (PCBs), hydroxylated polycyclic aromatic hydrocarbons (PAHs) and hetero-PAHs, as well as alkylphenols could be identified as further compounds with possible hormonal activity. Estrogenically active substances may occur in the groundwater below obsolete landfills, especially those that contain PCBs or waste from gasworks. These substances are not part of analytical programs routinely applied to contaminated sites and may therefore escape detection and assessment. Analyses using the E-screen assay and GC/MS in parallel have shown that the total estrogenic activity found in groundwater samples is to be ascribed to a multitude of individual compounds, some of which cannot be quantified due to lack of standard substances or assessed due to lack of a standardized procedure for determination of their estrogenic potency. By comparison with provisional guide values for estradiol (0.5 ng/L) and ethynylestradiol (0.3 ng/L), the damaging potential of the total estrogenic activity in groundwater samples can in fact be assessed, but specific remediation measures are impossible unless the hormonal activity can be attributed to individual chemical substances. On the one hand, further analyses of samples taken from possible pollution sources should be conducted in order to characterize the extent of groundwater pollution with xenoestrogens. On the other hand, the most potent individual compounds should be identified according to their estrogenic potency. To this end, bioassay-directed fractionation and structure elucidation should be carried out with concentrated samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据