4.8 Article

Real-Time Continuous Characterization of Secondary Organic Aerosol Derived from Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using the Aerodyne Aerosol Chemical Speciation Monitor

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 47, 期 11, 页码 5686-5694

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es400023n

关键词

-

资金

  1. Fulbright Presidential Fellowship

向作者/读者索取更多资源

Real-time continuous chemical measurements of fine aerosol were made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer and fall 2011 in downtown Atlanta, Georgia. Organic mass spectra measured by the ACSM were analyzed by positive, matrix factorization (PMF), yielding three conventional factors: hydrocarbon-like organic aerosol (HOA), semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility organic aerosol (LV-OOA). An additional OOA factor that contributed 33 +/- 10% of the organic mass was resolved in summer. This facto had a mass spectrum that strongly correlated (r(2) = 0.74) to that obtained from laboratory-generated secondary organic aerosol (SOA) derived from synthetic isoprene epoxydiols (IEPDX). Time series of this additional factor is also well correlated (r(2) = 59) with IEPDX-derived SOA tracers from filters collected in Atlanta but less correlated (r(2) < 0.3) with a methactylic acid epoxide (MAE)-derived SOA tracer, alpha-pinene SOA tracers, and a biomass burning tracer (i.e., levoglucosan), and primary emissions. Our analyses suggest IEPDX as the source of this additional factor, which has some correlation with aerosol acidity (r(2) = = 0.3), measured as H+ (nmol m(-3)), and sulfate mass loading (r(2) = 0.48), consistent with prior work showing that these two parameters promote heterogeneous chemistry g us of IEPDX to form SOA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Environmental

Molecular Understanding of the Enhancement in Organic Aerosol Mass at High Relative Humidity

Mihnea Surdu, Houssni Lamkaddam, Dongyu S. Wang, David M. Bell, Mao Xiao, Chuan Ping Lee, Dandan Li, Lucia Caudillo, Guillaume Marie, Wiebke Scholz, Mingyi Wang, Brandon Lopez, Ana A. . Piedehierro, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Pia Bogert, Zoe Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Kristina Hohler, Kimmo Korhonen, Jordan E. Krechmer, Katrianne Lehtipalo, Naser G. A. . Mahfouz, Hanna E. Manninen, Ruby Marten, Dario Massabo, Roy Mauldin, Tuukka Petaja, Joschka Pfeifer, Maxim Philippov, Birte Rorup, Mario Simon, Jiali Shen, Nsikanabasi Silas Umo, Franziska Vogel, Stefan K. . Weber, Marcel Zauner-Wieczorek, Rainer Volkamer, Harald Saathoff, Ottmar Moehler, Jasper Kirkby, Douglas R. Worsnop, Markku Kulmala, Frank Stratmann, Armin Hansel, Joachim Curtius, Andre Welti, Matthieu Riva, Neil M. Donahue, Urs Baltensperger, Imad El Haddad

Summary: This study investigates the effect of high relative humidity (RH) on the gas-particle partitioning of biogenic oxidized organic molecules at low temperatures. The results demonstrate that high RH increases the partitioning of semivolatile compounds and leads to a shift in the chemical composition and volatility distribution of organic aerosols towards less oxygenated and more volatile species.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source

Henning Finkenzeller, Siddharth Iyer, Xu-Cheng He, Mario Simon, Theodore K. Koenig, Christopher F. Lee, Rashid Valiev, Victoria Hofbauer, Antonio Amorim, Rima Baalbaki, Andrea Baccarini, Lisa Beck, David M. Bell, Lucia Caudillo, Dexian Chen, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Martin Heinritzi, Deniz Kemppainen, Changhyuk Kim, Jordan Krechmer, Andreas Kurten, Alexandr Kvashnin, Houssni Lamkaddam, Chuan Ping Lee, Katrianne Lehtipalo, Zijun Li, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Tatjana Muller, Tuukka Petaja, Maxim Philippov, Ananth Ranjithkumar, Birte Rorup, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Yee Jun Tham, Antonio Tome, Miguel Vazquez-Pufleau, Andrea C. Wagner, Dongyu S. Wang, Mingyi Wang, Yonghong Wang, Stefan K. Weber, Wei Nie, Yusheng Wu, Mao Xiao, Qing Ye, Marcel Zauner-Wieczorek, Armin Hansel, Urs Baltensperger, Jerome Brioude, Joachim Curtius, Neil M. Donahue, Imad El Haddad, Richard C. Flagan, Markku Kulmala, Jasper Kirkby, Mikko Sipila, Douglas R. Worsnop, Theo Kurten, Matti Rissanen, Rainer Volkamer

Summary: Iodine is an active trace element in atmospheric chemistry that can destroy ozone and form particles. Its emissions have increased threefold since 1950 and are expected to continue rising. In laboratory experiments, iodooxy hypoiodite (IOIO) was shown to efficiently convert into iodic acid (HIO3) via reactions IOIO + O-3 -> IOIO4 and IOIO4 + H2O -> HIO3 + HOI + O-(1)(2). This laboratory-derived mechanism explains field observations of daytime HIO3 in the remote lower free troposphere and suggests a catalytic role of iodine in aerosol formation.

NATURE CHEMISTRY (2023)

Article Engineering, Environmental

Molecular Characterization of Oxygenated Organic Molecules and Their Dominating Roles in Particle Growth in Hong Kong

Penggang Zheng, Yi Chen, Zhe Wang, Yuliang Liu, Wei Pu, Chuan Yu, Men Xia, Yang Xu, Jia Guo, Yishuo Guo, Linhui Tian, Xiaohui Qiao, Dan Dan Huang, Chao Yan, Wei Nie, Douglas R. Worsnop, Shuncheng Lee, Tao Wang

Summary: This study conducted ambient measurements of OOMs at a regional background site in South China. It revealed that nitrogen-containing products were dominant, and different factors influenced the composition and oxidation state of OOMs. The results demonstrated the significant role of OOMs in sub-100 nm particle growth and SOA formation.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Physical

Glass Transition Temperatures of Organic Mixtures from Isoprene Epoxydiol-Derived Secondary Organic Aerosol

Bo Chen, Jessica A. Mirrielees, Yuzhi Chen, Timothy B. Onasch, Zhenfa Zhang, Avram Gold, Jason D. Surratt, Yue Zhang, Sarah D. Brooks

Summary: We measured the Tg of IEPOX-derived SOA components using broadband dielectric spectroscopy and found that the Tg of mixtures depends on their composition. The Kwei equation provides a good fit for the Tg-composition relationship of complex mixtures. We demonstrate that the non-linear deviation of Tg as a function of composition may be caused by changes in the extent of hydrogen bonding in the mixture using Raman spectroscopy and density functional theory.

JOURNAL OF PHYSICAL CHEMISTRY A (2023)

Review Environmental Sciences

Hydrological models for climate-based assessments at the watershed scale: A critical review of existing hydrologic and water quality models

Arturo A. Keller, Kendra Garner, Nalini Rao, Eladio Knipping, Jeffrey Thomas

Summary: Global changes, such as climate and land use changes, have significant impacts on water resources. In order to plan for these changes, it is necessary to make projections and evaluate different hydrologic and water quality models. Among the models evaluated, MIKE-SHE, HEC-HMS, MODHMS, SWAT, and WARMF stand out in terms of functionality, availability, applicability, and support.

SCIENCE OF THE TOTAL ENVIRONMENT (2023)

Correction Chemistry, Multidisciplinary

Brown Carbon from Photo-Oxidation of Glyoxal and SO2 in Aqueous Aerosol (vol 7, pg 1131, 2023)

David O. De Haan, Lelia N. Hawkins, Praveen D. Wickremasinghe, Alyssa D. Andretta, Juliette R. Dignum, Audrey C. De Haan, Hannah G. Welsh, Elyse A. Pennington, Tianqu Cui, Jason D. Surratt, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin

ACS EARTH AND SPACE CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Brown Carbon from Photo-Oxidation of Glyoxal and SO2 in Aqueous Aerosol

David O. De Haan, Lelia N. Hawkins, Praveen D. Wickremasinghe, Alyssa D. Andretta, Juliette R. Dignum, Audrey C. De Haan, Hannah G. Welsh, Elyse A. Pennington, Tianqu Cui, Jason D. Surratt, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin

Summary: Aqueous-phase dark reactions during the co oxidation of glyoxal and S(IV) were found to be a potential source of brown carbon (BrC), which occurs more slowly in sunlit, sulfite containing solutions. Detectable amounts of BrC in aerosol require an OH radical source and occur most rapidly after a cloud event. Radical-initiated reactions and redox mechanisms play a role in this process. However, the BrC produced is about ten times less light-absorbing than wood smoke BrC at 365 nm.

ACS EARTH AND SPACE CHEMISTRY (2023)

Article Chemistry, Multidisciplinary

Observationally Constrained Modeling of the Reactive Uptake of Isoprene-Derived Epoxydiols under Elevated Relative Humidity and of Seed Aerosol Conditions

Jie Zhang, Manish Shrivastava, Alla Zelenyuk, Rahul A. Zaveri, Jason D. Surratt, Matthieu Riva, David Bell, Marianne Glasius

Summary: This study investigates the key parameters governing the formation of isoprene epoxydiol-derived secondary organic aerosol (IEPOX-SOA). The results show that reducing the reaction rate constants of 2-methyltetrol (tetrol) can bring the model predictions in agreement with experimental measurements of IEPOX-SOA under acidified aerosol conditions. Additionally, both the organosulfate (OS) and tetrol reaction rate constants need to be reduced for nonacidified aerosols to match the chamber observations. The study also reveals that the aerosol acidity significantly affects the oligomerization rate of tetrols.

ACS EARTH AND SPACE CHEMISTRY (2023)

Article Engineering, Environmental

Cloth-Air Partitioning of Neutral Per- and Polyfluoroalkyl Substances (PFAS) in North Carolina Homes during the Indoor PFAS Assessment (IPA) Campaign

Clara M. A. Eichler, Naomi Y. Chang, Elaine A. Cohen Hubal, Daniel E. Amparo, Jiaqi Zhou, Jason D. Surratt, Glenn C. Morrison, Barbara J. Turpin

Summary: During the Indoor PFAS Assessment (IPA) Campaign, concentrations of nine neutral PFAS were measured in air and cotton cloth in 11 homes in North Carolina. The study found that fluorotelomer alcohols were the dominant species in indoor air, while perfluorooctane sulfonamidoethanols accumulated most significantly in cloth. Cloth-air partition coefficients were derived for different PFAS and were positively correlated with the octanol-air partition coefficient. Temperature was found to have the greatest effect on PFAS accumulation.

ENVIRONMENTAL SCIENCE & TECHNOLOGY (2023)

Article Environmental Sciences

An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles

Lucia Caudillo, Mihnea Surdu, Brandon Lopez, Mingyi Wang, Markus Thoma, Steffen Brakling, Angela Buchholz, Mario Simon, Andrea C. Wagner, Tatjana Mueller, Manuel Granzin, Martin Heinritzi, Antonio Amorim, David M. Bell, Zoe Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Houssni Lamkaddam, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petaja, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Birte Rorup, Wiebke Scholz, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Ping Tian, Antonio Tome, Nsikanabasi Silas Umo, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, Andre Welti, Marcel Zauner-Wieczorek, Urs Baltensperger, Richard C. Flagan, Armin Hansel, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Douglas R. Worsnop, Imad El Haddad, Neil M. Donahue, Alexander L. Vogel, Andreas Kuerten, Joachim Curtius

Summary: The complete chemical characterization of nanoparticles is challenging due to their abundance but negligible mass. This study compares different techniques for the chemical composition analysis of secondary organic aerosol nanoparticles. The experiments were conducted at the CLOUD chamber, and simultaneous measurements were performed using four different techniques. The results generally agree on the important compounds found in the nanoparticles, but each technique captures different parts of the organic spectrum, potentially due to factors such as thermal decomposition or sampling artifacts.

ATMOSPHERIC CHEMISTRY AND PHYSICS (2023)

Article Environmental Sciences

Chemical identification of new particle formation and growth precursorsthrough positive matrix factorization of ambient ion measurements

Daniel John Katz, Aroob Abdelhamid, Harald Stark, Manjula R. Canagaratna, Douglas R. Worsnop, Eleanor C. Browne

Summary: Measurements of ambient ion chemical composition provide direct insight into the most acidic and basic trace gases and their ion-molecule clusters. The use of the atmospheric pressure interface time-of-flight mass spectrometer (APi-ToF) combined with binPMF analysis allows for the temporal evolution of compounds important for new particle formation and growth to be studied. The results showed that negative ions consist of strong acids, organosulfates, and clusters derived from monoterpene and sesquiterpene oxidation, while positive ions consist of alkyl pyridines and amines.

ATMOSPHERIC CHEMISTRY AND PHYSICS (2023)

Article Chemistry, Analytical

The fate of organic peroxides indoors: quantifying humidity-dependent uptake on naturally soiled indoor window glass

Marc Webb, Liyong Cui, Glenn Morrison, Karsten Baumann, Jason D. Surratt, Zhenfa Zhang, Joanna Atkin, Barbara J. Turpin

Summary: Humidity affects the removal and concentrations of indoor pollutants, especially in humid homes. Research on a model organic peroxide showed that the relative humidity has a greater effect on the removal rate and reaction probability on soiled surfaces compared to clean surfaces. These findings are important for predicting indoor concentrations of organic peroxides.

ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS (2023)

Article Environmental Sciences

A combined gas- and particle-phase analysis of highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis

Jian Zhao, Ella Hakkinen, Frans Graeffe, Jordan E. Krechmer, Manjula R. Canagaratna, Douglas R. Worsnop, Juha Kangasluoma, Mikael Ehn

Summary: Highly oxygenated organic molecules (HOMs) are crucial for the formation of secondary organic aerosol (SOA), but the lack of suitable analytical techniques has limited our understanding of particle-phase HOM speciation and its relationship with gas-phase HOM formation. This study used a novel VIA-NO3-CIMS system to investigate the gas- and particle-phase HOM products of a-pinene ozonolysis. The results showed that gas-phase dimer formation was suppressed with the addition of CO or NO, but particle-phase dimers still constituted a considerable fraction of the observed SOA. Overall, the VIA-NO3-CIMS system showed promise for combined online gas- and particle-phase HOM measurements.

ATMOSPHERIC CHEMISTRY AND PHYSICS (2023)

Article Environmental Sciences

Biogenic and anthropogenic sources of isoprene and monoterpenes and theirsecondary organic aerosol in Delhi, India

Daniel J. Bryant, Beth S. Nelson, Stefan J. Swift, Sri Hapsari Budisulistiorini, Will S. Drysdale, Adam R. Vaughan, Mike J. Newland, James R. Hopkins, James M. Cash, Ben Langford, Eiko Nemitz, W. Joe F. Acton, C. Nicholas Hewitt, Tuhin Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, James D. Lee, Andrew R. Rickard, Jacqueline F. Hamilton

Summary: Delhi, India is one of the most polluted cities in the world, but little is known about the emissions of biogenic volatile organic compounds (VOCs) or the sources of secondary organic aerosol (SOA). This study provides the first molecular-level measurements of SOA derived from isoprene and monoterpene in Delhi, and demonstrates that both biogenic and anthropogenic sources of these compounds can be important in urban areas.

ATMOSPHERIC CHEMISTRY AND PHYSICS (2023)

Article Environmental Sciences

Overcoming the lack of authentic standards for the quantification of biogenic secondary organic aerosol markers

Daniel J. J. Bryant, Alfred W. W. Mayhew, Kelly L. L. Pereira, Sri Hapsari Budisulistiorini, Connor Prior, William Unsworth, David O. O. Topping, Andrew R. R. Rickard, Jacqueline F. F. Hamilton

Summary: This study proposes a quantification method based on the prediction of relative ionisation efficiency factors to correct the concentrations of biogenic secondary organic aerosol species. The method was developed using commercially available standards and was able to predict the ionisation efficiency factors of biogenic organic acids without authentic standards. The concentration of biogenic secondary organic aerosol was corrected using the predicted factors and resulted in a significant decrease in average concentration.

ENVIRONMENTAL SCIENCE-ATMOSPHERES (2023)

暂无数据