4.8 Article

Kinetics and Mechanism of Oxidation of Tryptophan by Ferrate(VI)

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 47, 期 9, 页码 4572-4580

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es305283k

关键词

-

资金

  1. United States National Science Foundation [CBET 1236331]
  2. Directorate For Engineering
  3. Div Of Chem, Bioeng, Env, & Transp Sys [1236331] Funding Source: National Science Foundation

向作者/读者索取更多资源

Kinetics of the oxidation of tryptophan (Trp) and kynurenine (Kyn), precursors of nitrogenous disinfection byproducts (N-DBP), by ferrate(VI) ((FeO42-)-O-VI Fe(VI)) were investigated over the acidic to basic pH range. The second-order rate constants decreased with increase in pH, which could be described by the speciation of Fe(VI) and Trp (or Kyn). The trend of pH dependence of rates for Trp (i.e., aromatic alpha-amino acid) differs from that for glycine (i.e., aliphatic alpha-amino acid). A nonlinear relationship between transformation of Trp and the added amount of Fe(VI) was found. This suggests that the formed intermediate oxidized products (OPs), identified by LC-PDA and LC-MS techniques, could possibly compete with Tip to react with Fe(VI). N-Formylkynurenine (NFK) at pH 7.0 and 4-hydroxyquinoline (4-OH Q) and kynurenic acid (Kyn-A) at pH 9.0 were the major OPs. Tryptophan radical formation during the reaction was confirmed by the rapid-freeze quench EPR experiments. The oxygen atom transfer from Fe(VI) to NFK was demonstrated by reacting (FeO42-)-O-18 ion with Tip. A proposed mechanism explains the identified OPs at both neutral and alkaline pH. Kinetics and OPs by Fe(VI) were compared with other oxidants (chlorine, ClO2 center dot, O-3, and (OH)-O-center dot).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据