4.8 Article

Sex Differences in the Uptake and Disposition of Perfluorooctanoic Acid in Fathead Minnows after Oral Dosing

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 44, 期 1, 页码 491-496

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es901838y

关键词

-

资金

  1. Battelle independent research and development award
  2. U.S. Department of Energy

向作者/读者索取更多资源

Perfluorooctanoic acid (PFOA) among other perfluorinated acids is becoming recognized as a ubiquitous environmental contaminant. PFOA is resistant to environmental degradation and appears to undergo no biotransformation in animals. Previous toxicokinetic studies in rodents have indicated that urinary excretion is the most important elimination pathway once PFOA has been absorbed. In some species such as rats, large sex-related differences in urinary excretion have been reported, with females having a much shorter blood or plasma elimination half-life than that of males. It is unknown whether this phenomenon occurs in fish. Therefore, this study determined the disposition of PFOA in male and female fathead minnows (Pimephales promelas) after a single oral dose of PFOA. After dosing, minnows were subsequently euthanized at various times until 336 h postdosing and the PFOA concentration was measured in plasma, gonads, and fish carcass. The concentration-time profiles of PFOA were then analyzed using toxicokinetic methods. The results indicated a clear sex difference in the elimination of PFOA. The plasma elimination half-life of PFOA in female minnows was 6.3 h while in male minnows it was 68.5 h. Pretreatment of female minnows with the synthetic androgen trenbolone substantially delayed the elimination of PFOA, causing the elimination half-life to increase to 25.3 h. In males, pretreatment with the synthetic estrogen ethynylestradiol (EE2) had little effect on PFOA toxicokinetics. These results indicate that the sex differences in PFOA elimination in fathead minnows can at least partially be modulated by exposure to synthetic sex steroids. Whether sex differences in PFOA elimination in minnows is attributable to differences in renal transport activity, as it appears to be for rodents, is unknown at present but clearly warrants further study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据