4.5 Article

Assessment of the impact of the meteorological meso-scale circulation on air quality in arid subtropical region

期刊

ENVIRONMENTAL MONITORING AND ASSESSMENT
卷 185, 期 3, 页码 2329-2342

出版社

SPRINGER
DOI: 10.1007/s10661-012-2712-z

关键词

Assessment; Air pollution; COSMO model; Land-sea breeze; Northern coast; Planetary boundary layer depth; Oman

向作者/读者索取更多资源

In this paper, COSMO numerical weather prediction model is used to simulate land-sea breeze circulation in the north coast of Oman and to analyze the variability of the PBL depth. Typical summer day 1st August 2009 and winter day 1st January 2009 were simulated and verified by surface observations. The COSMO model was initialized using the German global model which runs as 40 km resolution and 40 vertical layers. The simulations show differences in the onset, strength, and inland penetration of the sea breeze. The high sea-land thermal contrast in the summer season induces earlier onset and progression of the sea breeze with larger horizontal and vertical extents. The summer and winter inland penetration is simulated around 150 and 65 km, respectively. The PBL depth was defined from the verticals profiles of the turbulence kinetic energy (TKE). The simulated PBL height varied at 1,600 m in summer and 700 m in the winter case. These results are in general in good agreement with the simulations of the National Centers for Environmental Prediction Global Data Assimilation System (NCEP-GDAS) model. The dispersive ability of the atmosphere was tested through the vertical mixing coefficient (VMC) generated by NCEP-GDAS simulations. The VMC during the summer simulated case is approximately four times larger than the respective one during the winter case. Consequently, during the advection of winter sea breeze, a shallow dome less than 100 m is shaped and forms an obstacle to the air-pollutant dispersion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据