4.6 Article

Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment

期刊

ENVIRONMENTAL MICROBIOLOGY
卷 11, 期 12, 页码 3223-3232

出版社

WILEY
DOI: 10.1111/j.1462-2920.2009.02036.x

关键词

-

资金

  1. Netherlands ministry of Economical affairs [EETK03044]
  2. Netherlands Organization for Scientific Research (NWO) [142.16.1011]

向作者/读者索取更多资源

P>Anaerobic oxidation of methane (AOM) is an important methane sink in the ocean but the microbes responsible for AOM are as yet resilient to cultivation. Here we describe the microbial analysis of an enrichment obtained in a novel submerged-membrane bioreactor system and capable of high-rate AOM (286 mu mol g(dry weight)-1 day-1) coupled to sulfate reduction. By constructing a clone library with subsequent sequencing and fluorescent in situ hybridization, we showed that the responsible methanotrophs belong to the ANME-2a subgroup of anaerobic methanotrophic archaea, and that sulfate reduction is most likely performed by sulfate-reducing bacteria commonly found in association with other ANME-related archaea in marine sediments. Another relevant portion of the bacterial sequences can be clustered within the order of Flavobacteriales but their role remains to be elucidated. Fluorescent in situ hybridization analyses showed that the ANME-2a cells occur as single cells without close contact to the bacterial syntrophic partner. Incubation with 13C-labelled methane showed substantial incorporation of 13C label in the bacterial C-16 fatty acids (bacterial; 20%, 44% and 49%) and in archaeal lipids, archaeol and hydroxyl-archaeol (21% and 20% respectively). The obtained data confirm that both archaea and bacteria are responsible for the anaerobic methane oxidation in a bioreactor enrichment inoculated with Eckernforde bay sediment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据