4.7 Article

Water-weakening behavior of Hawkesbury sandstone in brittle regime

期刊

ENGINEERING GEOLOGY
卷 178, 期 -, 页码 91-101

出版社

ELSEVIER
DOI: 10.1016/j.enggeo.2014.05.015

关键词

Water-weakening; Hawkesbury sandstone; Induced pore pressure; Fracture propagation

向作者/读者索取更多资源

This paper investigates the effect of water on the mechanical behavior of intact Hawkesbury sandstone, a massive rock formation in Sydney, Australia. Two sets of cylindrical samples air-dried and water-saturated were tested under the confining pressures of 4, 10, 18 and 25 MPa. Water-saturated samples were tested under undrained conditions with initial pore-water pressures of 1, 4, 7.2 and 10 MPa, respectively. Initial pore-water pressure was observed to increase with increasing deviatoric stress during undrained tests and the maximum induced pore-water pressure was observed to increase with increasing effective confining pressure. Peak effective strength showed an increasing trend with increasing confining pressure for both sample sets and the strengths of dry samples were always greater. Peak strength drops of 1336%, 2527%, 34.70% and 38.12% were observed due to water at the confining pressures of 4, 10, 18 and 25 MPa, respectively. Results for the residual strength of tested samples displayed that it increased with increasing confining pressure for both sample sets. The volumetric strain response revealed that the volume reduction due to compaction increases with increasing confining pressure, and dilatancy-related volume increase close to sample failure was not significant at higher confining pressures for both sample sets. The samples tested under dry conditions showed a considerably higher volume reduction by compaction than that for the samples tested under undrained conditions. Analysis of failure mechanisms indicated that all samples failed mainly by shear localization, where the angle of the failure plane, measured from the minor principal stress direction, was varied from c.55 degrees to c.45 degrees for dry samples and from c.50 degrees to c.40 degrees for the samples tested under undrained conditions, at 4 and 25 MPa confining pressures, respectively. Fracture propagation behavior was studied using an acoustic emission detection system and the results demonstrated that the micro-crack initiation occurred very close to the failure stress under low confining pressures, leading to a more brittle sudden failure, w\hereas under higher confining pressures it occurred relatively earlier, compared to the failure stress, showing more quasi-brittle characteristics. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Geological

A Coupled X-Ray Imaging and Experimental Permeability Study of Propped Hydraulically Induced Fractures

K. M. A. S. Bandara, P. G. Ranjith, W. G. P. Kumari

Summary: The study revealed that fractures generated in shale and siltstone formations during hydraulic fracturing exhibit different characteristics, and flow behavior is influenced by factors such as fracture tortuosity and proppant concentration.

ROCK MECHANICS AND ROCK ENGINEERING (2022)

Article Engineering, Environmental

Experimental investigation on the nonlinear characteristics of energy evolution and failure characteristics of coal under different gas pressures

Yi Xue, Jia Liu, P. G. Ranjith, Zhizhen Zhang, Feng Gao, Songhe Wang

Summary: This study conducted triaxial compression tests on coal under different gas pressure conditions to explore the influence mechanism of gas pressure on coal deformation, failure, and energy evolution. The mechanical properties, acoustic emission energy characteristics, and nonlinear characteristics of coal containing gas were obtained based on the test data. A theoretical formula for analyzing energy evolution was introduced and verified by test data. The research results indicate that energy rate can be used as a new effective mechanical parameter to analyze and predict the damage and failure characteristics of coal. The findings on energy dissipation characteristics and the defined ratio of dissipative energy rate and input energy rate provide insights for understanding the fracturing evolution and energy driving mechanism of coal.

BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT (2022)

Article Construction & Building Technology

Properties of well cement following carbonated brine exposure under HTHP conditions: A comparative study of alkali-activated and class G cements

M. H. Samarakoon, P. G. Ranjith, W. A. M. Wanniarachchi

Summary: This study examines the effects of carbonation on the properties and mechanisms of cement, showing that alkali-activated cements with higher calcium content exhibit better mechanical properties and a denser microstructure when exposed to carbonate brine.

CEMENT & CONCRETE COMPOSITES (2022)

Article Thermodynamics

Investigation of the mechanical damage of low rank coals under the impacts of cyclical liquid CO2 for coalbed methane recovery

Jizhao Xu, Cheng Zhai, Pathegama Gamage Ranjith, Shuxun Sang, Yong Sun, Yuzhou Cong, Wei Tang, Yangfeng Zheng

Summary: The study investigated the effects of liquid CO2 on coal strength, finding that the coupled effects of liquid CO2 temperature and adsorption can influence coal fracture behavior and crack morphology.

ENERGY (2022)

Article Energy & Fuels

Mechanical responses of coals under the effects of cyclical liquid CO2 during coalbed methane recovery process

Jizhao Xu, Cheng Zhai, P. G. Ranjith, Shuxun Sang, Xu Yu, Yong Sun, Yuzhou Cong, Yangfeng Zheng, Wei Tang

Summary: The study found that coal affected by liquid CO2 exhibited more complex destruction patterns, larger fractal dimensions, and greater structure degradation. The affected coals showed diverse mechanical responses, with temperature shock and CO2 adsorption potentially leading to crack growth and strength deterioration, ultimately destroying the coal with smaller yield strength.
Article Energy & Fuels

The role of heterogeneity in gas production and the propagation of the dissociation front using thermal stimulation, and huff and puff in gas hydrate reservoirs

David Lall, Vikram Vishal, M. V. Lall, P. G. Ranjith

Summary: The study found that gas production was less efficient in the presence of a permeable heterogeneity compared to other scenarios. The permeability affects the vertical extent of dissolved methane volume during thermal stimulation and huff and puff, while well depth influences the radial extent of dissociated molecules.

JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING (2022)

Article Engineering, Geological

The Role of Pore Pressure on the Mechanical Behavior of Coal Under Undrained Cyclic Triaxial Loading

Chunlin Zhong, Zhenyu Zhang, P. G. Ranjith, Chengpeng Zhang, Kangsheng Xue

Summary: The study found that pore water can affect the radial and volumetric strain evolution of coal, leading to dilation deformation. Additionally, due to the water propping effect, the cracks in saturated coal cannot close tightly during loading, causing sliding and generating numerous tensile cracks. Loading frequency can impact the decay of pore pressure, consequently influencing the number of cracks in coal.

ROCK MECHANICS AND ROCK ENGINEERING (2022)

Article Energy & Fuels

Quantification of CO2 Replacement in Methane Gas Hydrates: A Molecular Dynamics Perspective

Shashika Gajanayake, Ranjith Pathegama Gamage, Pabasara Wanniarachchige, Decheng Zhang

Summary: This study conducted molecular dynamic simulations to investigate the effects of temperature, pressure, and initial CO2 concentration on gas replacement characteristics for methane recovery and CO2 storage. The results showed that higher temperatures resulted in greater methane recovery, but diminished CO2 storage capacity. Higher initial CO2 concentrations facilitated better CO2 penetration into the hydrate structure, leading to increased methane recovery and improved CO2 storage.

JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING (2022)

Article Thermodynamics

Experimental study of micromechanical properties alterations of shale matrix treated by ScCO2-Water saturation using nanoindentation tests

P. Cheng, C. P. Zhang, Z. Y. Ma, J. P. Zhou, D. C. Zhang, X. F. Liu, H. Chen, P. G. Ranjith

Summary: Nanoindentation tests were conducted to investigate the effects of ScCO2-water treatment on shale matrix micromechanics, revealing significant heterogeneity in the properties of different minerals. Observation of indentation morphologies showed that considerable micro-fractures were generated in clay minerals, correlated to significant plastic deformation and layered crystal structures.

ENERGY (2022)

Article Engineering, Civil

An experimental study of the size effect on core shrinkage behaviour of reactive soils

S. D. D. A. Gedara, P. L. P. Wasantha, B. Teodosio, J. Li

Summary: This study investigates the influence of specimen size on axial and radial strains in core shrinkage tests. It found that larger specimens showed lower strains, attributing this behavior to the presence of more shrinkage cracks. Additionally, the axial and volumetric strains did not show significant variations with different length-to-diameter ratios.

TRANSPORTATION GEOTECHNICS (2022)

Article Engineering, Geological

Grain-scale analysis of proppant crushing and embedment using calibrated discrete element models

K. M. A. S. Bandara, P. G. Ranjith, W. Zheng, D. D. Tannant, V. R. S. De Silva, T. D. Rathnaweera

Summary: This study provides a grain-scale analysis of the fracture evolution mechanisms of proppant crushing, rock fracture damage during proppant embedment, and the influence of realistic reservoir/fracture fluid on proppant embedment. The results reveal that the selection of an appropriate proppant type is vital in quantifying the degree of proppant crushing and embedment within fractures.

ACTA GEOTECHNICA (2022)

Article Energy & Fuels

A clean and sustainable CO2 storage method in construction materials

B. Balinee, P. G. Ranjith, Herbert E. Huppert

Summary: The article discusses the impact of building material production on global carbon emissions and presents methods to reduce environmental impact through the use of waste and carbon sequestration. By incorporating discarded aluminum foil and industrial waste gases into cement, the performance and sustainability of cement can be improved. This approach significantly reduces carbon emissions, lowers costs, and stores a large amount of CO2.

GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES (2022)

Article Green & Sustainable Science & Technology

Mechanical Characteristics and Durability of HMA Made of Recycled Aggregates

Kiran Sapkota, Ehsan Yaghoubi, P. L. P. Wasantha, Rudi Van Staden, Sam Fragomeni

Summary: The feasibility of increasing the percentage of recycled aggregates to 100% in hot mix asphalt (HMA) was investigated. Recycled concrete aggregate (RCA), recycled glass (RG), and reclaimed asphalt pavement (RAP) were used to develop HMAs suitable for roads. The proposed recycled material HMA exhibited superior mechanical and resilient modulus performances, providing evidence-based insights into the increased proportion of recycled materials in the construction of asphalt pavements.

SUSTAINABILITY (2023)

Article Engineering, Geological

A Hybrid Approach to Rock Pre-conditioning Using Non-explosive Demolition Agents and Hydraulic Stimulation

V. R. S. De Silva, H. Konietzky, H. Mearten, P. G. Ranjith, W. G. P. Kumari

Summary: This study proposes a novel approach called the hybrid rock pre-conditioning method to enhance the sustainability and efficiency of low-grade ore mining. The method involves the use of soundless cracking demolition agents (SCDAs) to initiate radial fractures in a predrilled host rock, followed by hydraulic stimulation to extend the fractures. The results show that this method can create a high density of fractures around the injection well, and key factors such as rock mass heterogeneity and stress anisotropy affect its performance.

ROCK MECHANICS AND ROCK ENGINEERING (2023)

Article Energy & Fuels

Thermomechanical behaviour of well cement in different geological formations under the coupled effects of temperature and pressure

M. H. Samarakoon, P. G. Ranjith

Summary: Ensuring the intactness of cement sheaths is crucial for deep well applications in extreme underground conditions. This study investigates the behavior of wellbore materials, including steel casing, annulus cement sheaths, and surrounding rock formations, under continuous steam injection. The results show that materials in carbonate formations are more vulnerable to stress than those in sandstone formations, and the retention time of maximum temperature in cement sheaths is shorter in sandstone than in carbonate. It is also found that the cement sheaths in compliant formations like sandstone may fail due to tensile cracking along the thinnest thickness.

GEOENERGY SCIENCE AND ENGINEERING (2023)

暂无数据