4.7 Article

A triaxiality and Lode parameter dependent ductile fracture criterion

期刊

ENGINEERING FRACTURE MECHANICS
卷 128, 期 -, 页码 121-138

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2014.07.010

关键词

Fracture locus; Lode parameter; Triaxiality; Ductile fracture; Micromechanics

资金

  1. US National Science Foundation [CMS-0928547]

向作者/读者索取更多资源

A computational fracture locus is developed and used to predict the ductile fracture in ATSM A992 steels in this study. The fracture locus is obtained by performing micromechanical analyses on the computational cells by deforming computational cells along paths of predefined stress states described by two dimensionless stress-state parameters: stress triaxiality (T-sigma) and Lode parameter (L). The microscopic damage mechanisms at different stress-states are demonstrated. The microscopic damage mechanism is observed to change from predominantly microvoid elongation to microvoid dilation at transition triaxiality of T-sigma = 0.75 for ASTM A992 steels. This transition stress triaxiality is found to be dependent on hardening and microstructural properties of the matrix. Also, at low triaxiality, the Lode parameter is found to have a significant effect on the microvoid elongation and dilation for ASTM A992 steels. The computational fracture locus which is a function of triaxiality and Lode parameter proposed for ASTM A992 steels is implemented in the finite element program ABAQUS (R) as a ductile fracture criterion. This fracture model is validated using the existing experimental data on axisymmetrically notched specimens and new data on plate with holes and notches made of ASTM A992 steels. The procedure prescribed to develop the fracture criterion in this manuscript is generic and can be used for other metals whose hardening and microstructural properties are known. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据