4.6 Article

DYNAMICS OF SONIC HYDROGEN JET INJECTION AND MIXING INSIDE SCRAMJET COMBUSTOR

出版社

HONG KONG POLYTECHNIC UNIV, DEPT CIVIL & STRUCTURAL ENG
DOI: 10.1080/19942060.2013.11015451

关键词

hydrogen injection; compressible turbulent flows; scrmajet combustor; implicit LES

资金

  1. EPSRC

向作者/读者索取更多资源

This paper presents the application of a Finite Volume Godunov-type implicit large eddy simulation method to study fuel injection into the combustion chamber of HyShot-II scramjet engine without chemical reaction/combustion in order to understand the fuel injection and air-fuel (hydrogen) mixing. The study is carried out in two parts; part one presents analysis of 2D HyShot-II geometry (without fuel injection) incorporating high temperature gas formulation which is validated against the NASA Thermally-Perfect-Gas code in order to obtain the combustion chamber inlet conditions. These combustor initial conditions are then utilized in part two for 3D combustion chamber simulations with hydrogen injection but cold flow where a digital filter based turbulent inflow boundary condition has been utilized. The purpose of the study is to understand the flow physics, hydrogen jet penetration and air & fuel mixing inside the HyShot-II combustor which is vital at the design stages. Various flow features are investigated such as the Mach number, velocity, pressure distributions, temperature, turbulent kinetic energy, Reynolds stresses and the effect of counter rotating vortices on mixing. The results of full geometry simulations are compared with computational results from the German Aerospace Centre, DLR, whereas due to unavailability of any data for hydrogen cold flow the validity of the results is based upon a similar validation case presented earlier (Rana et al., 2011b).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据