4.8 Article

Synergistic enhancement of hydrogen storage and air stability via Mg nanocrystal-polymer interfacial interactions

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 6, 期 11, 页码 3267-3271

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ee41977k

关键词

-

资金

  1. Office of Science, Office of Basic Energy Sciences, at the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]
  2. Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center
  3. DOE

向作者/读者索取更多资源

The role of encapsulating polymers in nanocrystalline Mg air stability and hydrogen storage density was studied for a series of composites varying in both % Mg and polymer identity. In these materials, the Mg nanocrystals are completely dependent on the polymer for air stability. Remarkably, both air stability and hydrogen sorption capacity of poly(methylmethacrylate) composites were enhanced by reducing the amount of polymer. Composites consisting of 65 wt% Mg absorbed 6.95 wt% hydrogen and showed little oxidation after 3 months air exposure even after enduring the volume expansion induced by hydrogen sorption, whereas composites with 33.2 wt% Mg absorbed just 4.86 wt% hydrogen and were completely oxidized upon air exposure after hydrogen sorption. This surprising synergistic enhancement in stability and storage density is attributed to an increase in the tortuosity of the paths of gas molecules and increased interfacial structure-templating regions, which scale with % Mg loading and lead to nanoparticle entanglements, hindering polymer chain motion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据