4.8 Article

Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 5, 期 5, 页码 7132-7150

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2ee21204h

关键词

-

资金

  1. Fundacion Iberdrola
  2. Scottish Power
  3. Imperial College

向作者/读者索取更多资源

Carbon Capture and Storage (CCS) is an essential technology for reducing global CO2 emissions in the context of continued fossil fuel use in the power sector. To evaluate the emission reduction potential of any low-carbon generation technology it is necessary to consider emissions over the entire lifetime of the plant. This work examines the lifecycle greenhouse gas emissions of a 500 MWe pulverised coal-fired power plant with post-combustion Calcium Looping (CaL) and off-shore geological storage. CaL uses solid CO2-sorbent derived from abundant and non-toxic limestone (CaCO3) and is currently being piloted at the 1-2 MWth scale in Europe (Spain and Germany). This technology promises to be very competitive with the more mature chemical absorption processes, with the potential to reduce the efficiency and cost penalties of CO2 capture. We demonstrate that the emission intensity of a coal-fired power plant with CaL is at least comparable with one using MEA-solvent technology (i.e., similar to 229 gCO(2)e/kWh vs. 225 gCO(2)e/kWh). However, there is significant potential for additional emissions reduction when considering the recarbonation of exhausted sorbent in landfill. Furthermore, a coal-fired power plant with CaL could be carbon-neutral - or even achieve a net removal of CO2 from the atmosphere. That is, if the exhausted sorbent is used in the cement industry substituting the input of fresh-limestone; or if the exhausted sorbent is disposed in the ocean forming bicarbonate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据