4.8 Article

Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 4, 期 12, 页码 4962-4971

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1ee02073k

关键词

-

资金

  1. BioEnergy Science Center
  2. Office of Biological and Environmental Research in the DOE Office of Science
  3. U.S. Department of Energy [DE-AC05-00OR22725]

向作者/读者索取更多资源

Biomass is one of the most abundant potential sustainable sources for fuel and material production, however to fully realize this potential an improved understanding of lignocellulosic recalcitrance must be developed. In an effort to appreciate the underlying phenotypic, biochemical and morphological properties associated with the reduced recalcitrance observed in tension stress-induced reaction wood, we report the increased enzymatic sugar yield and corresponding chemical and ultrastructural properties of Populus tension wood. Populus tremula x alba (PTA) was grown under tension and stem segments containing three different wood types: normal wood (NW), tension wood (TV) from the elongated stem side and opposite wood (OW) from the compressed stem side were collected. A variety of analytical techniques were used to describe changes occurring as a result of the tension stress-induced formation of a gelatinous cell wall layer (G-layer). For example, gel permeation chromatography (GPC) and C-13 solid-state nuclear magnetic resonance (NMR) revealed that the molecular weight and crystallinity of cellulose in TW is greater than that of cellulose acquired from NW. Whole cell ionic liquid and other solid-state NMR analysis detailed the structure of lignin and hemicellulose in the samples, detecting the presence of variations in lignin and hemicellulose sub-units, linkages and semi-quantitatively estimating the relative amounts of syringyl (S), guaiacyl (G) and p-hydroxybenzoate (PB) monolignol units. It was confirmed that TW displayed an increase in PB or H-like lignin and S to G ratio from 1.25 to 1.50 when compared to the NW sample. Scanning electron microscopy (SEM) and coherent anti-Stokes Raman scattering (CARS) were also used to evaluate the morphology and corresponding spatial distribution of the major lignocellulosic components. We found changes in a combination of cell wall properties appear to influence recalcitrance more than any single factor alone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据