4.5 Article

Constructing Accurate Equivalent Electrical Circuit Models of Lithium Iron Phosphate and Lead-Acid Battery Cells for Solar Home System Applications

期刊

ENERGIES
卷 11, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/en11092305

关键词

dynamic battery model; electric equivalent circuit battery model; battery testing; solar home systems; VRLA; LiFePO4

资金

  1. Delft Global Initiative of the Delft University of Technology, the Netherlands

向作者/读者索取更多资源

The past few years have seen strong growth of solar-based off-grid energy solutions such as Solar Home Systems (SHS) as a means to ameliorate the grave problem of energy poverty. Battery storage is an essential component of SHS. An accurate battery model can play a vital role in SHS design. Knowing the dynamic behaviour of the battery is important for the battery sizing and estimating the battery behaviour for the chosen application at the system design stage. In this paper, an accurate cell level dynamic battery model based on the electrical equivalent circuit is constructed for two battery technologies: the valve regulated lead-acid (VRLA) battery and the LiFePO4 (LFP) battery. Series of experiments were performed to obtain the relevant model parameters. This model is built for low C-rate applications (lower than 0.5 C-rate) as expected in SHS. The model considers the non-linear relation between the state of charge (SOC) and open circuit voltage (V-OC) for both technologies. Additionally, the equivalent electrical circuit model for the VRLA battery was improved by including a 2nd order RC pair. The simulated model differs from the experimentally obtained result by less than 2%. This cell level battery model can be potentially scaled to battery pack level with flexible capacity, making the dynamic battery model a useful tool in SHS design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据